IDEAS home Printed from https://ideas.repec.org/p/zbw/iwqwdp/052016.html
   My bibliography  Save this paper

Pairs trading with partial cointegration

Author

Listed:
  • Clegg, Matthew
  • Krauss, Christopher

Abstract

Partial cointegration is a weakening of cointegration that allows for the "cointegrating" process to contain a random walk and a mean-reverting component. We derive its representation in state space, provide a maximum likelihood based estimation routine, and a suitable likelihood ratio test. Then, we explore the use of partial cointegration as a means for identifying promising pairs and for generating buy and sell signals. Specifically, we benchmark partial cointegration against several classical pairs trading variants from 1990 until 2015, on a survivor bias free data set of the S&P 500 constituents. We find annualized returns of more than 12 percent after transaction costs. These results can only partially be explained by common sources of systematic risk and are well superior to classical distance-based or cointegration-based pairs trading variants on our data set.

Suggested Citation

  • Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  • Handle: RePEc:zbw:iwqwdp:052016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/140632/1/858609614.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    3. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    4. Markus Leippold & Harald Lohre, 2012. "International price and earnings momentum," The European Journal of Finance, Taylor & Francis Journals, vol. 18(6), pages 535-573, July.
    5. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    6. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    8. Carlos Eduardo de Moura & Adrian Pizzinga & Jorge Zubelli, 2016. "A pairs trading strategy based on linear state space models and the Kalman filter," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1559-1573, October.
    9. Nicolas Huck, 2015. "Pairs trading: does volatility timing matter?," Applied Economics, Taylor & Francis Journals, vol. 47(57), pages 6239-6256, December.
    10. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    11. Jacobs, Heiko & Weber, Martin, 2015. "On the determinants of pairs trading profitability," Journal of Financial Markets, Elsevier, vol. 23(C), pages 75-97.
    12. Nicolas Huck & Komivi Afawubo, 2015. "Pairs trading and selection methods: is cointegration superior?," Applied Economics, Taylor & Francis Journals, vol. 47(6), pages 599-613, February.
    13. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    14. Harbo, Ingrid, et al, 1998. "Asymptotic Inference on Cointegrating Rank in Partial Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 388-399, October.
    15. Nicolas Huck, 2015. "Pairs trading: does volatility timing matter?," Post-Print hal-01370246, HAL.
    16. Corbae, Dean & Ouliaris, Sam, 1988. "Cointegration and Tests of Purchasing Power Parity," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 508-511, August.
    17. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    18. Krauss, Christopher & Stübinger, Johannes, 2015. "Nonlinear dependence modeling with bivariate copulas: Statistical arbitrage pairs trading on the S&P 100," FAU Discussion Papers in Economics 15/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Campbell, John Y, 1987. "Does Saving Anticipate Declining Labor Income? An Alternative Test of the Permanent Income Hypothesis," Econometrica, Econometric Society, vol. 55(6), pages 1249-1273, November.
    20. Pantula, Sastry G & Gonzalez-Farias, Graciela & Fuller, Wayne A, 1994. "A Comparison of Unit-Root Test Criteria," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 449-459, October.
    21. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    22. Summers, Lawrence H, 1986. "Does the Stock Market Rationally Reflect Fundamental Values?," Journal of Finance, American Finance Association, vol. 41(3), pages 591-601, July.
    23. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    24. Robert Elliott & John Van Der Hoek & William Malcolm, 2005. "Pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 271-276.
    25. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    26. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    27. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    28. K. Triantafyllopoulos & G. Montana, 2011. "Dynamic modeling of mean-reverting spreads for statistical arbitrage," Computational Management Science, Springer, vol. 8(1), pages 23-49, April.
    29. Ozgur S. Ince & R. Burt Porter, 2006. "Individual Equity Return Data From Thomson Datastream: Handle With Care!," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 29(4), pages 463-479, December.
    30. Nicolas Huck & Komivi Afawubo, 2015. "Pairs trading and selection methods: is cointegration superior?," Post-Print hal-01369852, HAL.
    31. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    32. Krauss, Christopher & Herrmann, Klaus & Teis, Stefan, 2015. "On the power and size properties of cointegration tests in the light of high-frequency stylized facts," FAU Discussion Papers in Economics 11/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    33. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    34. Timofei Bogomolov, 2013. "Pairs trading based on statistical variability of the spread process," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1411-1430, September.
    35. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    36. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    37. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    38. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Clegg, Matthew & Krauss, Christopher & Rende, Jonas, 2017. "partialCI: An R package for the analysis of partially cointegrated time series," FAU Discussion Papers in Economics 05/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Guang Zhang, 2020. "Pairs Trading with Nonlinear and Non-Gaussian State Space Models," Papers 2005.09794, arXiv.org.
    6. Stübinger, Johannes & Mangold, Benedikt & Krauss, Christopher, 2016. "Statistical arbitrage with vine copulas," FAU Discussion Papers in Economics 11/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    2. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    4. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    7. Krauss, Christopher & Stübinger, Johannes, 2015. "Nonlinear dependence modeling with bivariate copulas: Statistical arbitrage pairs trading on the S&P 100," FAU Discussion Papers in Economics 15/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    9. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    10. Marianna Brunetti & Roberta De Luca, 2022. "Sensitivity of Profitability in Cointegration-Based Pairs Trading," CEIS Research Paper 540, Tor Vergata University, CEIS, revised 11 Apr 2022.
    11. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    12. Zouheir Mighri & Faysal Mansouri, 2016. "Asymmetric price transmission within the Argentinean stock market: an asymmetric threshold cointegration approach," Empirical Economics, Springer, vol. 51(3), pages 1115-1149, November.
    13. Marianna Brunetti & Roberta de Luca, 2022. "Sensitivity of profitability in cointegration-based pairs trading," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0090, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    14. Marianna Brunetti & Roberta De Luca, 2020. "Pre-selection in Cointegration-based Pairs Trading," CEIS Research Paper 500, Tor Vergata University, CEIS, revised 10 Mar 2021.
    15. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    16. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    17. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    18. Marianna Brunetti & Roberta De Luca, 2021. "Pairs Trading In The Index Options Market," CEIS Research Paper 512, Tor Vergata University, CEIS, revised 02 Sep 2021.
    19. Boming Ning & Prakash Chakraborty & Kiseop Lee, 2023. "Optimal Entry and Exit with Signature in Statistical Arbitrage," Papers 2309.16008, arXiv.org, revised Mar 2024.
    20. Krauss, Christopher & Herrmann, Klaus & Teis, Stefan, 2015. "On the power and size properties of cointegration tests in the light of high-frequency stylized facts," FAU Discussion Papers in Economics 11/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Keywords

    statistical arbitrage; pairs trading; quantitative strategies; cointegration; partial cointegration;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwqwdp:052016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.