IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Dynamic modeling of mean-reverting spreads for statistical arbitrage

  • K. Triantafyllopoulos


  • G. Montana


Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Computational Management Science.

Volume (Year): 8 (2011)
Issue (Month): 1 (April)
Pages: 23-49

in new window

Handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:23-49
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
  2. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-93, January.
  3. Chaudhuri, Kausik & Wu, Yangru, 2003. "Random walk versus breaking trend in stock prices: Evidence from emerging markets," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 575-592, April.
  4. Kalaba, Robert E. & Tesfatsion, Leigh S., 1988. "The Flexible Least Squares Approach to Time-Varying Linear Regression," Staff General Research Papers 11198, Iowa State University, Department of Economics.
  5. Kadane, Joseph B. & Chan, Ngai Hang & Wolfson, Lara J., 1996. "Priors for unit root models," Journal of Econometrics, Elsevier, vol. 75(1), pages 99-111, November.
  6. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
  7. Monahan, John F., 1983. "Fully Bayesian analysis of ARMA time series models," Journal of Econometrics, Elsevier, vol. 21(3), pages 307-331, April.
  8. Manishi Prasad & Peter Wahlqvist & Rich Shikiar & Ya-Chen Tina Shih, 2004. "A," PharmacoEconomics, Springer Healthcare | Adis, vol. 22(4), pages 225-244.
  9. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
  10. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
  11. Giovanni Montana & Kostas Triantafyllopoulos & Theodoros Tsagaris, 2007. "Flexible least squares for temporal data mining and statistical arbitrage," Papers 0709.3884,
  12. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-73, April.
  13. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, 07.
  14. Carcano, G. & Falbo, P. & Stefani, S., 2005. "Speculative trading in mean reverting markets," European Journal of Operational Research, Elsevier, vol. 163(1), pages 132-144, May.
  15. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters, in: Regional Climate Change and Variability, chapter 1 Edward Elgar.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:23-49. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.