IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v12y1988i1p43-48.html
   My bibliography  Save this article

The flexible least squares approach to time-varying linear regression

Author

Listed:
  • Kalaba, Robert
  • Tesfatsion, Leigh

Abstract

This study proposes a Flexible Least Squares (FLS) method for state estimation when the dynamic equations are unknown but the process state evolves only slowly over time. A smoothness prior is introduced in place of an explicit specification for the unknown dynamic equations governing the evolution of the process state. Simulation experiments illustrating the method are presented. Annotated pointers to related work can be accessed here: http://www2.econ.iastate.edu/tesfatsi/flshome.htm
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kalaba, Robert & Tesfatsion, Leigh, 1988. "The flexible least squares approach to time-varying linear regression," Journal of Economic Dynamics and Control, Elsevier, vol. 12(1), pages 43-48, March.
  • Handle: RePEc:eee:dyncon:v:12:y:1988:i:1:p:43-48
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-1889(88)90013-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baris Soybilen & Burak Alparslan Eroglu, 2019. "Time-Varying Taylor Rule Estimation for Turkey with Flexible Least Square Method," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(2), pages 1-20.
    2. Zsuzsanna Zsibók & Balázs Varga, 2012. "Inflation Persistence in Hungary: a Spatial Analysis," Working Papers 1203, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    3. Kalaba, Robert & Tesfatsion, Leigh, 1996. "A multicriteria approach to model specification and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 193-214, February.
    4. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    5. Evžen Kočenda & Balázs Varga, 2018. "The Impact of Monetary Strategies on Inflation Persistence," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 229-274, September.
    6. Ling T. He, & James. R. Webb & Neil Myer, 2003. "Interest Rate Sensitivities of REIT Returns," International Real Estate Review, Asian Real Estate Society, vol. 6(1), pages 1-21.
    7. Pusse, Leo, 1998. "Export als Bestimmungsfaktor der Beschäftigung : ökonomische Analysen auf makroökonomischer Ebene (Export as a determinant of employment : econometric analyses at macroeconomic level)," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 31(1), pages 108-122.
    8. Scharnagl, Michael & Stapf, Jelena, 2015. "Inflation, deflation, and uncertainty: What drives euro-area option-implied inflation expectations, and are they still anchored in the sovereign debt crisis?," Economic Modelling, Elsevier, vol. 48(C), pages 248-269.
    9. K. Triantafyllopoulos & G. Montana, 2011. "Dynamic modeling of mean-reverting spreads for statistical arbitrage," Computational Management Science, Springer, vol. 8(1), pages 23-49, April.
    10. Zsolt Darvas & Balẳ Varga, 2014. "Inflation persistence in central and eastern European countries," Applied Economics, Taylor & Francis Journals, vol. 46(13), pages 1437-1448, May.
    11. O. Olawale Awe & A. Adedayo Adepoju, 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 239-258, June.
    12. Josipa VIŠIC & Blanka ŠKRABIC, 2010. "Determinants of Incoming Cross-Border M&A: Evidence from European Transition Economies," EcoMod2010 259600168, EcoMod.
    13. Ling He & Alan Reichert, 2003. "Time variation paths of factors affecting financial institutions and stock returns," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 31(1), pages 71-86, March.
    14. Pusse, Leo, 1998. "Export als Bestimmungsfaktor der Beschäftigung : ökonomische Analysen auf makroökonomischer Ebene (Export as a determinant of employment : econometric analyses at macroeconomic level)," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 31(1), pages 108-122.
    15. Tucci, Marco P., 1995. "Time-varying parameters: a critical introduction," Structural Change and Economic Dynamics, Elsevier, vol. 6(2), pages 237-260, June.
    16. He, Ling T., 2005. "Instability and predictability of factor betas of industrial stocks: The Flexible Least Squares solutions," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 619-640, September.
    17. Zsolt Darvas & Balázs Varga, 2012. "Uncovering Time-Varying Parameters with the Kalman-Filter and the Flexible Least Squares: a Monte Carlo Study," Working Papers 1204, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    18. Naveen Srinivasan, 2014. "Testing the Expectations Trap Hypothesis: A Time-Varying Parameter Approach," Working Papers 2014-089, Madras School of Economics,Chennai,India.
    19. Scharnagl, Michael & Stapf, Jelena, 2014. "Inflation, deflation, and uncertainty: What drives euro area option-implied inflation expectations and are they still anchored in the sovereign debt crisis?," Discussion Papers 24/2014, Deutsche Bundesbank.
    20. A. Talha Yalta, 2016. "Bootstrap Inference of Level Relationships in the Presence of Serially Correlated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 339-366, August.
    21. Kuethe, Todd H. & Foster, Kenneth A. & Florax, Raymond J.G.M., 2008. "A Spatial Hedonic Model with Time-Varying Parameters: A New Method Using Flexible Least Squares," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6306, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    22. He, Ling T., 2001. "Time variation paths of international transmission of stock volatility -- US vs. Hong Kong and South Korea," Global Finance Journal, Elsevier, vol. 12(1), pages 79-93.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:12:y:1988:i:1:p:43-48. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.