IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i3p1037-1054.html

Interpretable water level forecaster with spatiotemporal causal attention mechanisms

Author

Listed:
  • Hong, Sungchul
  • Choi, Yunjin
  • Jeon, Jong-June

Abstract

Accurate forecasting of river water levels is vital for effectively managing traffic flow and mitigating the risks associated with natural disasters. This task presents challenges due to the intricate factors influencing the flow of a river. Recent advances in machine learning have introduced numerous effective forecasting methods. However, these methods lack interpretability due to their complex structure, resulting in limited reliability. Addressing this issue, this study proposes a deep learning model that quantifies interpretability, with an emphasis on water level forecasting. This model focuses on generating quantitative interpretability measurements, which align with the common knowledge embedded in the input data. This is facilitated by the utilization of a transformer architecture that is purposefully designed with masking, incorporating a multi-layer network that captures spatiotemporal causation. We perform a comparative analysis on the Han River dataset obtained from Seoul, South Korea, from 2016 to 2021. The results illustrate that our approach offers enhanced interpretability consistent with common knowledge, outperforming competing methods. The approach also enhances robustness against distribution shift.

Suggested Citation

  • Hong, Sungchul & Choi, Yunjin & Jeon, Jong-June, 2025. "Interpretable water level forecaster with spatiotemporal causal attention mechanisms," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1037-1054.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:1037-1054
    DOI: 10.1016/j.ijforecast.2024.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024001043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yirui Wu & Yukai Ding & Yuelong Zhu & Jun Feng & Sifeng Wang, 2020. "Complexity to Forecast Flood: Problem Definition and Spatiotemporal Attention LSTM Solution," Complexity, Hindawi, vol. 2020, pages 1-13, March.
    2. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    3. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    4. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    5. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    6. Assimakopoulos, V. & Nikolopoulos, K., 2000. "The theta model: a decomposition approach to forecasting," International Journal of Forecasting, Elsevier, vol. 16(4), pages 521-530.
    7. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    2. He, Miao & Jiang, Weiwei & Gu, Weixi, 2024. "TriChronoNet: Advancing electricity price prediction with Multi-module fusion," Applied Energy, Elsevier, vol. 371(C).
    3. Tiantian Tu, 2025. "Bridging Short- and Long-Term Dependencies: A CNN-Transformer Hybrid for Financial Time Series Forecasting," Papers 2504.19309, arXiv.org.
    4. Sengupta, Shovon & Chakraborty, Tanujit & Singh, Sunny Kumar, 2025. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," International Journal of Forecasting, Elsevier, vol. 41(3), pages 953-981.
    5. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    6. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    7. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    8. Sprangers, Olivier & Wadman, Wander & Schelter, Sebastian & de Rijke, Maarten, 2024. "Hierarchical forecasting at scale," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1689-1700.
    9. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    10. Liao, Xuan & Wong, Man Sing & Zhu, Rui, 2025. "Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    11. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2025. "Generative probabilistic forecasting of wind power: A Denoising-Diffusion-based nonstationary signal modeling approach," Energy, Elsevier, vol. 317(C).
    12. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    13. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    14. Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing tourism demand forecasting with a transformer-based framework," Annals of Tourism Research, Elsevier, vol. 107(C).
    15. Gomez, William & Wang, Fu-Kwun & Sheu, Shey-Huei, 2025. "Short-term smart grid energy forecasting using a hybrid deep learning method on univariate and multivariate data sets," Energy, Elsevier, vol. 335(C).
    16. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    17. Xu, Yongzhuo & Kang, Bingyi, 2025. "A novel model based on graph kernel and S-R score in visibility graph for time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 674(C).
    18. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    19. Tuominen, Jalmari & Pulkkinen, Eetu & Peltonen, Jaakko & Kanniainen, Juho & Oksala, Niku & Palomäki, Ari & Roine, Antti, 2024. "Forecasting emergency department occupancy with advanced machine learning models and multivariable input," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1410-1420.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:1037-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.