IDEAS home Printed from https://ideas.repec.org/r/cdl/anderf/qt9mf223rs.html
   My bibliography  Save this item

The MIDAS Touch: Mixed Data Sampling Regression Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
  2. Etienne, Xiaoli L., 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205124, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
  3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
  4. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
  5. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  6. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
  7. Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 451-462, Mayo.
  8. Carl Bonham & Peter Fuleky & James Jones & Ashley Hirashima, 2015. "Nowcasting Tourism Industry Performance Using High Frequency Covariates," Working Papers 2015-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  9. Lee, Chien-Chiang & Chen, Mei-Ping & Chang, Chi-Hung, 2014. "Industry co-movement and cross-listing: Do home country factors matter?," Japan and the World Economy, Elsevier, vol. 32(C), pages 96-110.
  10. repec:eee:ecmode:v:66:y:2017:i:c:p:132-138 is not listed on IDEAS
  11. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
  12. repec:bla:jorssa:v:180:y:2017:i:2:p:353-407 is not listed on IDEAS
  13. Modugno, Michele, 2013. "Now-casting inflation using high frequency data," International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
  14. repec:spr:jbuscr:v:12:y:2016:i:2:d:10.1007_s41549-016-0008-z is not listed on IDEAS
  15. Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
  16. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
  17. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
  18. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
  19. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
  20. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
  21. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
  22. Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2017. "A daily indicator of economic growth for the euro area," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 43-63.
  23. Hirashima, Ashley & Jones, James & Bonham, Carl S. & Fuleky, Peter, 2017. "Forecasting in a Mixed Up World: Nowcasting Hawaii Tourism," Annals of Tourism Research, Elsevier, vol. 63(C), pages 191-202.
  24. Langedijk, Sven & Monokroussos, George & Papanagiotou, Evangelia, 2015. "Benchmarking Liquidity Proxies: Accounting for Dynamics and Frequency Issues," MPRA Paper 61865, University Library of Munich, Germany.
  25. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
  26. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  27. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
  28. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  29. Lahiri, Kajal & Monokroussos, George, 2013. "Nowcasting US GDP: The role of ISM business surveys," International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
  30. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
  31. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
  32. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
  33. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
  34. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
  35. Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
  36. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
  37. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Nowcasting," Working Papers ECARES ECARES 2010-021, ULB -- Universite Libre de Bruxelles.
  38. Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
  39. repec:eee:ecmode:v:68:y:2018:i:c:p:586-598 is not listed on IDEAS
  40. Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," ARCHIVOS DE ECONOMÍA 014828, DEPARTAMENTO NACIONAL DE PLANEACIÓN.
  41. Taamouti, Abderrahim & Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
  42. repec:eee:ecofin:v:43:y:2018:i:c:p:118-128 is not listed on IDEAS
  43. Paolo Gorgi & Siem Jan (S.J.) Koopman & Mengheng Li, 2018. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," Tinbergen Institute Discussion Papers 18-026/III, Tinbergen Institute.
  44. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  45. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
  46. Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
  47. repec:eee:empfin:v:43:y:2017:i:c:p:130-142 is not listed on IDEAS
  48. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
  49. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
  50. Götz, Thomas B. & Hecq, Alain, 2014. "Nowcasting causality in mixed frequency vector autoregressive models," Economics Letters, Elsevier, vol. 122(1), pages 74-78.
  51. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  52. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions, Second Version," PIER Working Paper Archive 08-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Apr 2008.
  53. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
  54. Götz Thomas B. & Hecq Alain & Urbain Jean-Pierre, 2012. "Real-Time Forecast Density Combinations (Forecasting US GDP Growth Using Mixed-Frequency Data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  55. Michael P. Clements & David F. Hendry, 2005. "Guest Editors' Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
  56. repec:eee:eneeco:v:67:y:2017:i:c:p:83-90 is not listed on IDEAS
  57. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
  58. Michelle T. Armesto & Rubén Hernández-Murillo & Michael T. Owyang & Jeremy M. Piger, 2007. "Identifying asymmetry in the language of the Beige Book: a mixed data sampling approach," Working Papers 2007-010, Federal Reserve Bank of St. Louis.
  59. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
  60. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
  61. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
  62. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
  63. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
  64. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55, October.
  65. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
  66. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
  67. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
  68. repec:gam:jjrfmx:v:10:y:2017:i:4:p:21-:d:118742 is not listed on IDEAS
  69. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  70. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP
    [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]
    ," MPRA Paper 63713, University Library of Munich, Germany.
  71. James D. Hamilton, 2008. "Daily Monetary Policy Shocks and the Delayed Response of New Home Sales," NBER Working Papers 14223, National Bureau of Economic Research, Inc.
  72. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
  73. Philip Hans Franses & Eva Janssens, 2017. "Recovering Historical Inflation Data from Postage Stamps Prices," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 10(4), pages 1-11, November.
  74. repec:eee:ecosta:v:5:y:2018:i:c:p:45-66 is not listed on IDEAS
  75. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
  76. Virk, Nader & Javed, Farrukh, 2017. "European equity market integration and joint relationship of conditional volatility and correlations," Journal of International Money and Finance, Elsevier, vol. 71(C), pages 53-77.
  77. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
  78. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2017. "Using the payment system data to forecast the Italian GDP," Temi di discussione (Economic working papers) 1098, Bank of Italy, Economic Research and International Relations Area.
  79. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
  80. repec:eee:reveco:v:49:y:2017:i:c:p:69-83 is not listed on IDEAS
  81. Boriss Siliverstovs, 2015. "Dissecting the purchasing managers' index," KOF Working papers 15-376, KOF Swiss Economic Institute, ETH Zurich.
  82. Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
  83. Michael Boldin & Jonathan H. Wright, 2015. "Weather-Adjusting Economic Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(2 (Fall)), pages 227-278.
  84. repec:dau:papers:123456789/15246 is not listed on IDEAS
  85. Roberto Steri, 2015. "Collateral-Based Asset Pricing," 2015 Meeting Papers 293, Society for Economic Dynamics.
  86. Laura D'Amato & Lorena Garegnani & Emilio Blanco, 2016. "GDP Nowcasting: Assessing the Cyclical Conditions of the Argentine Economy," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(74), pages 7-26, December.
  87. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  88. Guerrero Víctor M. & García Andrea C. & Sainz Esperanza, 2013. "Rapid Estimates of Mexico’s Quarterly GDP," Journal of Official Statistics, De Gruyter Open, vol. 29(3), pages 397-423, June.
  89. repec:eee:ecofin:v:42:y:2017:i:c:p:421-432 is not listed on IDEAS
  90. Laura D´Amato & Lorena Garegnani & Emilio Blanco, 2015. "GDP Nowcasting: Assessing business cycle conditions in Argentina," BCRA Working Paper Series 201569, Central Bank of Argentina, Economic Research Department.
  91. Paul Viefers, 2011. "Bayesian Inference for the Mixed-Frequency VAR Model," Discussion Papers of DIW Berlin 1172, DIW Berlin, German Institute for Economic Research.
  92. Stefan Gebauer, 2017. "The Use of Financial Market Variables in Forecasting," DIW Roundup: Politik im Fokus 115, DIW Berlin, German Institute for Economic Research.
  93. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
  94. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 9(3), pages 1-20, September.
  95. Boldin, Michael D. & Wright, Jonathan H., 2015. "Weather-adjusting employment data," Working Papers 15-5, Federal Reserve Bank of Philadelphia.
  96. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
  97. Hamilton, James D., 2008. "Daily monetary policy shocks and new home sales," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1171-1190, October.
  98. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
  99. McCracken, Michael W. & Owyang, Michael T. & Sekhposyan, Tatevik, 2015. "Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR," Working Papers 2015-30, Federal Reserve Bank of St. Louis.
  100. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
  101. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
  102. Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
  103. Franses, Ph.H.B.F., 2016. "Yet another look at MIDAS regression," Econometric Institute Research Papers EI2016-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  104. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
  105. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
  106. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
  107. repec:eee:eneeco:v:68:y:2017:i:c:p:141-150 is not listed on IDEAS
  108. Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk, 2014. "Constructing a financial fragility index for emerging countries," Finance Research Letters, Elsevier, vol. 11(4), pages 410-419.
  109. repec:sbe:breart:v:31:y:2011:i:2:a:4056 is not listed on IDEAS
  110. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
  111. Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
  112. Chunpeng Yang & Rengui Zhang, 2014. "Does mixed-frequency investor sentiment impact stock returns? Based on the empirical study of MIDAS regression model," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 966-972, March.
  113. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
  114. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
  115. Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
  116. Marie Bessec, 2016. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Working Papers hal-01358595, HAL.
  117. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
  118. Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.