IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp132-141.html
   My bibliography  Save this article

Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS

Author

Listed:
  • Zhao, Xin
  • Han, Meng
  • Ding, Lili
  • Kang, Wanglin

Abstract

This paper presents a real-time forecasting procedure that utilizes multiple factors with different sampling frequencies to predict the weekly carbon price. Novel combination-MIDAS models with five weight-type schemes are proposed for evaluating the forecast accuracy. The evidence shows that combination-MIDAS models provide forecasting performance gains over traditional models, which supports the use of mixed-frequency data that consist of economic and energy indicators to forecast the weekly carbon price. It is also shown that, Coal is the best predictor for carbon price forecasting and that forecasts that are based on Crude have similar trends to actual carbon prices but are higher than the actual prices.

Suggested Citation

  • Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:132-141
    DOI: 10.1016/j.apenergy.2018.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301223
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    2. repec:eee:appene:v:211:y:2018:i:c:p:1039-1049 is not listed on IDEAS
    3. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    4. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    5. Thijs Benschopa & Brenda López Cabrera, 2014. "Volatility Modelling of CO2 Emission Allowance Spot Prices with Regime-Switching GARCH Models," SFB 649 Discussion Papers SFB649DP2014-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    7. Aatola, Piia & Ollikainen, Markku & Toppinen, Anne, 2013. "Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals," Energy Economics, Elsevier, vol. 36(C), pages 380-395.
    8. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    9. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    10. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    11. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    12. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    13. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    14. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    15. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, April.
    16. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    17. Bangzhu Zhu, 2012. "A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network," Energies, MDPI, Open Access Journal, vol. 5(2), pages 1-16, February.
    18. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    19. Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
    20. repec:dau:papers:123456789/6969 is not listed on IDEAS
    21. Andrade, Philippe & Fourel, Valère & Ghysels, Eric & Idier, Julien, 2014. "The financial content of inflation risks in the euro area," International Journal of Forecasting, Elsevier, vol. 30(3), pages 648-659.
    22. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "What explain the short-term dynamics of the prices of CO2 emissions?," Energy Economics, Elsevier, vol. 46(C), pages 122-135.
    23. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    24. repec:dau:papers:123456789/4598 is not listed on IDEAS
    25. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    26. repec:dau:papers:123456789/4210 is not listed on IDEAS
    27. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    28. Oberndorfer, Ulrich, 2009. "EU Emission Allowances and the stock market: Evidence from the electricity industry," Ecological Economics, Elsevier, vol. 68(4), pages 1116-1126, February.
    29. Chunpeng Yang & Rengui Zhang, 2014. "Does mixed-frequency investor sentiment impact stock returns? Based on the empirical study of MIDAS regression model," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 966-972, March.
    30. repec:dau:papers:123456789/4349 is not listed on IDEAS
    31. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 521-536.
    32. repec:ipg:wpaper:2014-081 is not listed on IDEAS
    33. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    34. Julien Chevallier, 2010. "Volatility forecasting of carbon prices using factor models," Economics Bulletin, AccessEcon, vol. 30(2), pages 1642-1660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:171:y:2019:i:c:p:69-76 is not listed on IDEAS
    2. repec:gam:jsusta:v:11:y:2018:i:1:p:116-:d:193281 is not listed on IDEAS
    3. repec:eee:ecolec:v:157:y:2019:i:c:p:253-265 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:132-141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.