IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2014-050.html

Volatility modelling of CO₂ emission allowance spot prices with regime-switching GARCH models

Author

Listed:
  • Benschopa, Thijs
  • López Cabreraa, Brenda

Abstract

We analyse the short-term spot price of European Union Allowances (EUAs), which is of particular importance in the transition of energy markets and for the development of new risk management strategies. Due to the characteristics of the price process, such as volatility persistence, breaks in the volatility process and heavy-tailed distributions, we investigate the use of Markov switching GARCH (MS-GARCH) models on daily spot market data from the second trading period of the EU ETS. Emphasis is given to short-term forecasting of prices and volatility. We find that MS-GARCH models distinguish well between two states and that the volatility processes in the states are clearly different. This finding can be explained by the EU ETS design. Our results support the use of MS-GARCH models for risk management, especially because their forecasting ability is better than other Markov switching or simple GARCH models.

Suggested Citation

  • Benschopa, Thijs & López Cabreraa, Brenda, 2014. "Volatility modelling of CO₂ emission allowance spot prices with regime-switching GARCH models," SFB 649 Discussion Papers 2014-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2014-050
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/103791/1/797029869.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    2. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    3. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    4. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Eric Zivot, 2008. "Practical Issues in the Analysis of Univariate GARCH Models," Working Papers UWEC-2008-03-FC, University of Washington, Department of Economics.
    7. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    8. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    9. repec:dau:papers:123456789/4210 is not listed on IDEAS
    10. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    11. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    12. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    13. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    14. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-050 is not listed on IDEAS
    2. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.
    3. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    4. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    5. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    6. Nader Trabelsi & Aviral Kumar Tiwari, 2023. "CO2 Emission Allowances Risk Prediction with GAS and GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 775-805, February.
    7. Aatola, Piia & Ollikainen, Markku & Toppinen, Anne, 2013. "Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals," Energy Economics, Elsevier, vol. 36(C), pages 380-395.
    8. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    9. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    10. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    11. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1-2), pages 27-35, January.
    12. Benschop, Thijs & López Cabrera, Brenda, 2017. "Realized volatility of CO₂ futures," SFB 649 Discussion Papers 2017-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    14. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    15. repec:hum:wpaper:sfb649dp2017-025 is not listed on IDEAS
    16. Philip, Dennis & Shi, Yukun, 2016. "Optimal hedging in carbon emission markets using Markov regime switching models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 1-15.
    17. Mawuli Segnon & Thomas Lux & Rangan Gupta, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-Type Volatility Models," Working Papers 201550, University of Pretoria, Department of Economics.
    18. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    19. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    21. John Hua Fan & Eduardo Roca & Alexandr Akimov, 2014. "Estimation and performance evaluation of optimal hedge ratios in the carbon market of the European Union Emissions Trading Scheme," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 73-91, February.
    22. Ying Fan & Yin-Peng Liu & Jian-Feng Guo, 2016. "How to explain carbon price using market micro-behaviour?," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4992-5007, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.