IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/126066.html
   My bibliography  Save this paper

The Effect of Aggregation on Seasonal Cointegration in Mixed Frequency data

Author

Listed:
  • Bauer, Dietmar
  • del Barrio Castro, Tomás

Abstract

Economic time series often show a strong persistency as well as seasonal variations that are appropri ately modelled using seasonal unit root models in addition to deterministic components. In many cases di¤erent variables within a vector time series are driven by identical common trends and cycles leading to cointegration. This paper investigates the consequences for the properties of vector processes when some components are aggregated in time. This may involve moving from a fully observed system that is seasonally cointegrated at a frequency !k = 2 k=S with k = 1;:::;(S 1)=2 where S is the number of seasons per year, to a system with time series sampled at high sampling rate (HSR) observed for S seasons per year and time series with low sampling rate (LSR) observed SA seasons per year, such that SA = S=Q and Q is an integer. The (partial) aggregation has implications on the unit root and cointegration properties: Aggregation potentially shifts the frequency of the unit roots. This may lead to an aliasing e¤ect wherein common cycles to di¤erent unit roots become aligned and cannot be separated any more, in turn impacting cointegrating relations. This paper uses the triangular systems representations in the bivariate case as well as the state space framework (in a general setting) to investigate the e¤ect of aggregation on the unit root properties of multivariate time series. The main results indicate under which assumptions and in which situations the analysis of the integration and cointegration properties of time series with mixed sampling rate relates to the same properties of the underyling data generating process. The results also discuss full aggregation of all components. These results lead to the proposal of an e¤ective econometric strategy for detecting cointegration at the various sampling rates, as is demonstrated in a simulation exercise. Finally an empirical application with monthly data of arrivals and departures of the Mallorca Airport, also illustrate the ndings collected in the present work.

Suggested Citation

  • Bauer, Dietmar & del Barrio Castro, Tomás, 2025. "The Effect of Aggregation on Seasonal Cointegration in Mixed Frequency data," MPRA Paper 126066, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:126066
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/126066/1/MPRA_paper_126066.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franses, Philip Hans & Boswijk, H. Peter, 1996. "Temporal aggregation in a periodically integrated autoregressive process," Statistics & Probability Letters, Elsevier, vol. 30(3), pages 235-240, October.
    2. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    3. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    4. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    5. Bauer, Dietmar & Wagner, Martin, 2012. "A State Space Canonical Form For Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1313-1349, December.
    6. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, vol. 15(4), pages 469-518, August.
    7. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    8. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    9. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    10. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    11. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    12. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    13. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    14. Anderson, Brian D.O. & Deistler, Manfred & Felsenstein, Elisabeth & Koelbl, Lukas, 2016. "The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case," Journal of Econometrics, Elsevier, vol. 192(2), pages 366-373.
    15. Marcus J. Chambers, 2019. "Frequency Domain Estimation of Continuous Time Cointegrated Models with Mixed Frequency and Mixed Sample Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 887-913, November.
    16. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    17. Gianluca Cubadda, 2001. "Complex Reduced Rank Models For Seasonally Cointegrated Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 63(4), pages 497-511, September.
    18. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    2. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    3. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    4. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
    5. Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
    6. Alain Hecq & Marie Ternes & Ines Wilms, 2025. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 1946-1968, September.
    7. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
    8. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    9. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
    10. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    11. Daniel Hopp, 2024. "Benchmarking econometric and machine learning methodologies in nowcasting GDP," Empirical Economics, Springer, vol. 66(5), pages 2191-2247, May.
    12. Philipp Gersing & Leopold Soegner & Manfred Deistler, 2022. "Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR," Papers 2204.05952, arXiv.org, revised Jul 2023.
    13. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    14. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    15. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    16. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    17. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    18. Boriss Siliverstovs, 2020. "Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts," Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
    19. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    20. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:126066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.