IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v217y2020i1p140-160.html
   My bibliography  Save this article

Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data

Author

Listed:
  • Chambers, Marcus J.

Abstract

This paper proposes a simple method for exploiting the information contained in mixed frequency and mixed sample data in the estimation of cointegrating vectors. The asymptotic properties of easy-to-compute spectral regression estimators of the cointegrating vectors are derived and these estimators are shown to belong to the class of optimal cointegration estimators. Furthermore, Wald statistics based on these estimators have asymptotic chi-square distributions which enable inferences to be made straightforwardly. Simulation experiments suggest that the spectral regression estimators considered perform well in finite samples and are at least as good as time domain fully modified estimators. The finite sample size and power properties of the spectral regression-based Wald statistic are also found to be good.

Suggested Citation

  • Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
  • Handle: RePEc:eee:econom:v:217:y:2020:i:1:p:140-160
    DOI: 10.1016/j.jeconom.2019.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762030004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    2. Michael A. Thornton, 2019. "Exact Discrete Representations of Linear Continuous Time Models with Mixed Frequency Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 951-967, November.
    3. Shiller, Robert J. & Perron, Pierre, 1985. "Testing the random walk hypothesis : Power versus frequency of observation," Economics Letters, Elsevier, vol. 18(4), pages 381-386.
    4. Dean Corbae & Sam Ouliaris & Peter C. B. Phillips, 2002. "Band Spectral Regression with Trending Data," Econometrica, Econometric Society, vol. 70(3), pages 1067-1109, May.
    5. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    6. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    7. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    8. Corbae, Dean & Ouliaris, Sam & Phillips, Peter C B, 1994. "A Reexamination of the Consumption Function Using Frequency Domain Regressions," Empirical Economics, Springer, vol. 19(4), pages 595-609.
    9. Byeongchan Seong & Sung K. Ahn & Peter A. Zadrozny, 2013. "Estimation of vector error correction models with mixed-frequency data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 194-205, March.
    10. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    11. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    12. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    13. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    14. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    15. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    16. Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
    17. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    18. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    19. Corbae, Dean & Ouliaris, Sam & Phillips, Peter C B, 1994. "A Reexamination of the Consumption Function Using Frequency Domain Regressions," Empirical Economics, Springer, vol. 19(4), pages 595-609.
    20. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    21. Marcus J. Chambers, 2019. "Frequency Domain Estimation of Continuous Time Cointegrated Models with Mixed Frequency and Mixed Sample Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 887-913, November.
    22. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Gersing & Leopold Soegner & Manfred Deistler, 2022. "Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR," Papers 2204.05952, arXiv.org, revised Jul 2023.
    2. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    3. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    2. J. Isaac Miller, 2019. "Testing Cointegrating Relationships Using Irregular and Non‐Contemporaneous Series with an Application to Paleoclimate Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 936-950, November.
    3. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    4. Gabriel Pons Rotger, 2000. "Temporal Aggregation and Ordinary Least Squares Estimation of Cointegrating Regressions," Econometric Society World Congress 2000 Contributed Papers 1317, Econometric Society.
    5. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    6. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    7. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    8. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    9. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    10. Chambers, M.J. & McCrorie, J.R., 2004. "Frequency Domain Gaussian Estimation of Temporally Aggregated Cointegrated Systems," Other publications TiSEM 0d3ed468-36ef-4baf-8339-8, Tilburg University, School of Economics and Management.
    11. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    12. Peter C.B. Phillips & Igor Kheifets, 2021. "On Multicointegration," Cowles Foundation Discussion Papers 2306, Cowles Foundation for Research in Economics, Yale University.
    13. Phillips, Peter C.B. & Leirvik, Thomas & Storelvmo, Trude, 2020. "Econometric estimates of Earth’s transient climate sensitivity," Journal of Econometrics, Elsevier, vol. 214(1), pages 6-32.
    14. Chambers, Marcus J. & Roderick McCrorie, J., 2007. "Frequency domain estimation of temporally aggregated Gaussian cointegrated systems," Journal of Econometrics, Elsevier, vol. 136(1), pages 1-29, January.
    15. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, vol. 86(2), pages 337-368, June.
    16. de Mello Luiz & Moccero Diego & Mogliani Matteo, 2013. "Do Latin American Central Bankers Behave Non-Linearly? The Experiences of Brazil, Chile, Colombia and Mexico," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 141-165, April.
    17. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    18. Dierk Herzer & Holger Strulik & Sebastian Vollmer, 2012. "The long-run determinants of fertility: one century of demographic change 1900–1999," Journal of Economic Growth, Springer, vol. 17(4), pages 357-385, December.
    19. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    20. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    Mixed frequency data; Mixed sample data; Cointegration; Spectral regression;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:217:y:2020:i:1:p:140-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.