IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1759-d1664522.html
   My bibliography  Save this article

The Prediction of Soybean Price in China Based on a Mixed Data Sampling–Support Vector Regression Model

Author

Listed:
  • Xing Liu

    (College of Information Management, Nanjing Agricultural University, Nanjing 210095, China)

  • Wenhuan Zhou

    (College of Information Management, Nanjing Agricultural University, Nanjing 210095, China)

  • Zhihang Gao

    (College of Information Management, Nanjing Agricultural University, Nanjing 210095, China)

  • Dongqing Zhang

    (College of Information Management, Nanjing Agricultural University, Nanjing 210095, China)

  • Kaiping Ma

    (College of Information Management, Nanjing Agricultural University, Nanjing 210095, China)

Abstract

Soybean is a crucial economic crop and it is one of the most marketized and internationalized bulk agricultural products in China. As fluctuations in soybean prices directly impact national food security and agrarian stability, it is essential to predict this price accurately. Soybean price is influenced by multiple factors, such as macroeconomic data (typically low-frequency, measured quarterly or monthly), weather conditions, and investor sentiment data (high-frequency, for example, daily). In order to incorporate mixed-frequency data into a forecasting model, the Mixed Data Sampling (MIDAS) model was employed. Given the complexity and nonlinearity of soybean price fluctuations, machine learning techniques were adopted. Therefore, a MIDAS-SVR model (combining the MIDAS model and support vector regression) is proposed in this paper, which can capture the nonlinear and non-stationary patterns of soybean prices. Data on the soybean price in China (January 2012–January 2024) were analyzed and the mean absolute percentage error (MAPE) of the MIDAS-SVR model was 1.71%, which demonstrates that the MIDAS-SVR model proposed in this paper is effective. However, this study is limited to a single time series, and further validation across diverse datasets is needed to confirm generalizability.

Suggested Citation

  • Xing Liu & Wenhuan Zhou & Zhihang Gao & Dongqing Zhang & Kaiping Ma, 2025. "The Prediction of Soybean Price in China Based on a Mixed Data Sampling–Support Vector Regression Model," Mathematics, MDPI, vol. 13(11), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1759-:d:1664522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    2. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    3. Dufour, Jean-Marie & García, René & Taamouti, Abderrahim, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    5. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    6. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    7. Nikita Fokin, 2021. "The importance of modeling structural breaks in forecasting Russian GDP," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 5-29.
    8. Amirali Nasouri, 2025. "The Impact of Geopolitical Risks on Equity Markets and Financial Stress: A Comparative Analysis of Emerging and Advanced Economies," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 30-41.
    9. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    10. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
    11. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    12. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    13. Hanslin Grossmann, Sandra & Scheufele, Rolf, 2015. "Foreign PMIs: A reliable indicator for Swiss exports," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112830, Verein für Socialpolitik / German Economic Association.
    14. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    15. Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna Rodríguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
    16. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    17. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    18. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    19. d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Journal of Econometrics, Elsevier, vol. 249(PC).
    20. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1759-:d:1664522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.