IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10312-z.html
   My bibliography  Save this article

Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth

Author

Listed:
  • Ba Chu

    (Carleton University)

  • Shafiullah Qureshi

    (Carleton University
    NUML)

Abstract

We run a ‘horse race’ among popular forecasting methods, including machine learning (ML) and deep learning (DL) methods, that are employed to forecast U.S. GDP growth. Given the unstable nature of GDP growth data, we implement a recursive forecasting strategy to calculate the out-of-sample performance metrics of forecasts for multiple subperiods. We use three sets of predictors: a large set of 224 predictors [of U.S. GDP growth] taken from a large quarterly macroeconomic database (namely, FRED-QD), a small set of nine strong predictors selected from the large set, and another small set including these nine strong predictors together with a high-frequency business condition index. We then obtain the following three main findings: (1) when forecasting with a large number of predictors with mixed predictive power, density-based ML methods (such as bagging, boosting, or neural networks) can somewhat outperform sparsity-based methods (such as Lasso) for short-horizon forecast, but it is not easy to distinguish the performance of these two types of methods for long-horizon forecast; (2) density-based ML methods tend to perform better with a large set of predictors than with a small subset of strong predictors, especially when it comes to shorter horizon forecast; and (3) parsimonious models using a strong high-frequency predictor can outperform other sophisticated ML and DL models using a large number of low-frequency predictors at least for long-horizon forecast, highlighting the important role of predictors in economic forecasting. We also find that ensemble ML methods (which are the special cases of density-based ML methods) can outperform popular DL methods.

Suggested Citation

  • Ba Chu & Shafiullah Qureshi, 2023. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1567-1609, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10312-z
    DOI: 10.1007/s10614-022-10312-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10312-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10312-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    2. Carriero, Andrea & Galvão, Ana Beatriz & Kapetanios, George, 2019. "A comprehensive evaluation of macroeconomic forecasting methods," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1226-1239.
    3. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    4. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    5. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    6. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    7. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    8. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    9. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    10. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    11. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    12. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    13. Christian M. Dahl & Emil N. S{o}rensen, 2021. "Time Series (re)sampling using Generative Adversarial Networks," Papers 2102.00208, arXiv.org.
    14. Paranhos, Livia, 2021. "Predicting Inflation with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1344, University of Warwick, Department of Economics.
    15. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    16. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    17. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba Chu & Shafiullah Qureshi, 2021. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Carleton Economic Papers 21-12, Carleton University, Department of Economics.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    4. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
    5. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    6. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    7. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    8. Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
    9. Michael Graff & Dominik Studer, 2018. "Konstruktion von Sammelindikatoren für den Konjunkturverlauf bei prekärer Datenlage am Beispiel Montenegros," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 12(3), pages 81-91, October.
    10. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    11. Joseph, Andreas & Kalamara, Eleni & Kapetanios, George & Potjagailo, Galina & Chakraborty, Chiranjit, 2021. "Forecasting UK inflation bottom up," Bank of England working papers 915, Bank of England, revised 27 Sep 2022.
    12. Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
    13. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    14. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org.
    15. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    16. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    17. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    18. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    19. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    20. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.

    More about this item

    Keywords

    Lasso; Ridge regression; Random forest; Boosting algorithms; Artificial neural networks; Dimensionality reduction methods; MIDAS; GDP growth;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10312-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.