IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119314645.html
   My bibliography  Save this article

Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?

Author

Listed:
  • Zhu, Sha
  • Liu, Qiuhong
  • Wang, Yan
  • Wei, Yu
  • Wei, Guiwu

Abstract

Although VIX has long been recognized as an index to measure fear sentiment in US stock markets, a set of similar measurements called Equity Market Volatility (EMV) trackers are newly created based on the text-counts of newspaper articles including several keywords related to US economy or stock market volatility. In this paper, we use GARCH-MIDAS method to quantify the in-sample explanatory and out-of-sample predictive powers of these two kinds of fear indices in US stock markets. Our empirical results show that VIX has larger in-sample impacts on US stock market volatility than EMV trackers. However, the out-of-sample volatility predictive performances of EMV trackers are generally superior to VIX across different US stock indices and prediction time horizons. In addition, policy-related EMV tracker acts better than VIX and other EMV trackers in predicting volatilities of US stock markets.

Suggested Citation

  • Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119314645
    DOI: 10.1016/j.physa.2019.122567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314645
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    4. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    5. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    8. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    9. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    10. Pratap Chandra Pati & Parama Barai & Prabina Rajib, 2018. "Forecasting stock market volatility and information content of implied volatility index," Applied Economics, Taylor & Francis Journals, vol. 50(23), pages 2552-2568, May.
    11. James Kozyra & Camillo Lento, 2011. "Using VIX data to enhance technical trading signals," Applied Economics Letters, Taylor & Francis Journals, vol. 18(14), pages 1367-1370.
    12. Petroni, Filippo & Serva, Maurizio, 2016. "Observability of market daily volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 838-842.
    13. Fang, Libing & Qian, Yichuo & Chen, Ying & Yu, Honghai, 2018. "How does stock market volatility react to NVIX? Evidence from developed countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 490-499.
    14. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost, 2019. "Policy News and Stock Market Volatility," NBER Working Papers 25720, National Bureau of Economic Research, Inc.
    15. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    16. Wei, Yu & Yu, Qianwen & Liu, Jing & Cao, Yang, 2018. "Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 923-930.
    17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    18. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
    19. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    20. Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
    21. Yu, Miao, 2019. "Forecasting Bitcoin volatility: The role of leverage effect and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    22. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    23. Conrad, Christian & Loch, Karin, 2015. "The variance risk premium and fundamental uncertainty," Economics Letters, Elsevier, vol. 132(C), pages 56-60.
    24. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    25. Mahmod Qadan & Joseph Yagil, 2012. "Fear sentiments and gold price: testing causality in-mean and in-variance," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 363-366, March.
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    28. Mo, Bin & Mu, Jinqi & Zhang, Bilin, 2019. "The relationship between news-based implied volatility and volatility of US stock market: What can we learn from multiscale perspective?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    29. Xu, Weiju & Wang, Jiqian & Ma, Feng & Lu, Xinjie, 2019. "Forecast the realized range-based volatility: The role of investor sentiment and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    30. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    2. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    3. Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
    4. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    5. Yu, Honghai & Fang, Libing & Sun, Wencong, 2018. "Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 931-940.
    6. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    7. Huawei Niu & Tianyu Liu, 2024. "Forecasting the volatility of European Union allowance futures with macroeconomic variables using the GJR-GARCH-MIDAS model," Empirical Economics, Springer, vol. 67(1), pages 75-96, July.
    8. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    9. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    10. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    11. Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
    12. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
    13. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    14. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    15. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    16. V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis," Working Paper CRENoS 202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    18. Zeng, Sheng & Liu, Xinchun & Li, Xiafei & Wei, Qi & Shang, Yue, 2019. "Information dominance among hedging assets: Evidence from return and volatility directional spillovers in time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    19. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    20. Alessandra Amendola & Vincenzo Candila & Antonio Scognamillo, 2017. "On the influence of US monetary policy on crude oil price volatility," Empirical Economics, Springer, vol. 52(1), pages 155-178, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119314645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.