IDEAS home Printed from https://ideas.repec.org/p/tas/wpaper/23636.html
   My bibliography  Save this paper

World steel production: A new monthly indicator of global real economic activity

Author

Abstract

In this paper we propose a new indicator of monthly global real economic activity, named world steel production. We use world steel production, OECD industrial production index and Kilian’s rea index to forecast world real GDP, and key commodity prices. We find that world steel production generates large statistically significant gains in forecasting world real GDP and oil prices, relative to an autoregressive benchmark. A forecast combination of the three indices produces statistically significant gains in forecasting world real GDP, oil, natural gas, gold and fertilizer prices, relative to an autoregressive benchmark.

Suggested Citation

  • Ravazzolo, Francesco & Vespignani, Joaquin, 2017. "World steel production: A new monthly indicator of global real economic activity," Working Papers 2017-08, University of Tasmania, Tasmanian School of Business and Economics.
  • Handle: RePEc:tas:wpaper:23636
    as

    Download full text from publisher

    File URL: http://eprints.utas.edu.au/23636/1/2017-08_Ravazzolo_Vespignani.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2012. "Oil prices, exchange rates and emerging stock markets," Energy Economics, Elsevier, vol. 34(1), pages 227-240.
    2. Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters,in: Commodity Prices and Markets, East Asia Seminar on Economics, Volume 20, pages 15-42 National Bureau of Economic Research, Inc.
    3. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    4. Kim, Soyoung & Roubini, Nouriel, 2000. "Exchange rate anomalies in the industrial countries: A solution with a structural VAR approach," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 561-586, June.
    5. Angus Deaton, 2005. "Measuring Poverty in a Growing World (or Measuring Growth in a Poor World)," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 1-19, February.
    6. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    7. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    8. Radetzki, Marian, 2006. "The anatomy of three commodity booms," Resources Policy, Elsevier, vol. 31(1), pages 56-64, March.
    9. Humphreys, David, 2010. "The great metals boom: A retrospective," Resources Policy, Elsevier, vol. 35(1), pages 1-13, March.
    10. Matteo Ciccarelli & Benoît Mojon, 2010. "Global Inflation," The Review of Economics and Statistics, MIT Press, vol. 92(3), pages 524-535, August.
    11. Apergis, Nicholas & Miller, Stephen M., 2009. "Do structural oil-market shocks affect stock prices?," Energy Economics, Elsevier, vol. 31(4), pages 569-575, July.
    12. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    13. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    14. Angus Deaton, 2005. "ERRATUM: Measuring Poverty in a Growing World (or Measuring Growth in a Poor World)," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 395-395, May.
    15. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    16. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    17. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    18. Herrera, Ana María & Lagalo, Latika Gupta & Wada, Tatsuma, 2011. "Oil Price Shocks And Industrial Production: Is The Relationship Linear?," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 472-497, November.
    19. Ratti, Ronald A. & Vespignani, Joaquin L., 2013. "Why are crude oil prices high when global activity is weak?," Economics Letters, Elsevier, vol. 121(1), pages 133-136.
    20. Mullineaux, Donald J, 1980. "Unemployment, Industrial Production, and Inflation Uncertainty in the United States," The Review of Economics and Statistics, MIT Press, vol. 62(2), pages 163-169, May.
    21. Grilli, Vittorio & Roubini, Nouriel, 1996. "Liquidity models in open economies: Theory and empirical evidence," European Economic Review, Elsevier, vol. 40(3-5), pages 847-859, April.
    22. Frederick R. Macaulay, 1938. "Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States since 1856," NBER Books, National Bureau of Economic Research, Inc, number maca38-1, December.
    23. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    24. Victor Zarnowitz, 1987. "The Regularity of Business Cycles," NBER Working Papers 2381, National Bureau of Economic Research, Inc.
    25. Gorton, Gary, 1988. "Banking Panics and Business Cycles," Oxford Economic Papers, Oxford University Press, vol. 40(4), pages 751-781, December.
    26. Kim, Soyoung, 2001. "International transmission of U.S. monetary policy shocks: Evidence from VAR's," Journal of Monetary Economics, Elsevier, vol. 48(2), pages 339-372, October.
    27. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    28. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    29. James Rossiter, 2010. "Nowcasting the Global Economy," Discussion Papers 10-12, Bank of Canada.
    30. Shaohua Chen & Martin Ravallion, 2010. "The Developing World is Poorer than We Thought, But No Less Successful in the Fight Against Poverty," The Quarterly Journal of Economics, Oxford University Press, vol. 125(4), pages 1577-1625.
    31. Gerlach, H M Stefan, 1988. "World Business Cycles under Fixed and Flexible Exchange Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 20(4), pages 621-632, November.
    32. Charles W. Calomiris & R. Glenn Hubbard, 1989. "Price Flexibility, Credit Availability, and Economic Fluctuations: Evidence from the United States, 1894–1909," The Quarterly Journal of Economics, Oxford University Press, vol. 104(3), pages 429-452.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    global real economic activity; world steel production; forecasting;

    JEL classification:

    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tas:wpaper:23636. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Vitali Alexeev). General contact details of provider: http://edirc.repec.org/data/dutasau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.