IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/11856.html
   My bibliography  Save this book chapter

Commodity Prices, Commodity Currencies, and Global Economic Developments

In: Commodity Prices and Markets

Author

Listed:
  • Jan J. J. Groen
  • Paolo A. Pesenti

Abstract

In this paper, we seek to produce forecasts of commodity price movements that can systematically improve on naive statistical benchmarks. We revisit how well changes in commodity currencies perform as potential efficient predictors of commodity prices, a view emphasized in the recent literature. In addition, we consider different types of factor-augmented models that use information from a large data set containing a variety of indicators of supply and demand conditions across major developed and developing countries. These factor-augmented models use either standard principal components or the more novel partial least squares (PLS) regression to extract dynamic factors from the data set. Our forecasting analysis considers ten alternative indices and sub-indices of spot prices for three different commodity classes across different periods. We find that, of all the approaches, the exchange-rate-based model and the PLS factor-augmented model are more likely to outperform the naive statistical benchmarks, although PLS factor-augmented models usually have a slight edge over the exchange-rate-based approach. However, across our range of commodity price indices we are not able to generate out-of-sample forecasts that, on average, are systematically more accurate than predictions based on a random walk or autoregressive specifications.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters, in: Commodity Prices and Markets, pages 15-42, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:11856
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c11856.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    2. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, Oxford University Press, vol. 125(3), pages 1145-1194.
    3. Jan J. J. Groen & George Kapetanios, 2009. "Model selection criteria for factor-augmented regressions," Staff Reports 363, Federal Reserve Bank of New York.
    4. Eduardo Borensztein & Carmen M. Reinhart, 1994. "The Macroeconomic Determinants of Commodity Prices," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 236-261, June.
    5. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    6. Margaret E. Slade & Henry Thille, 2006. "Commodity Spot Prices: An Exploratory Assessment of Market Structure and Forward‐Trading Effects," Economica, London School of Economics and Political Science, vol. 73(290), pages 229-256, May.
    7. Aasim M. Husain & Chakriya Bowman, 2004. "Forecasting Commodity Prices; Futures Versus Judgment," IMF Working Papers 2004/041, International Monetary Fund.
    8. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    9. Selim Elekdag & René Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2008. "Oil Price Movements and the Global Economy: A Model-Based Assessment," IMF Staff Papers, Palgrave Macmillan, vol. 55(2), pages 297-311, June.
    10. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    11. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    12. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    13. Reinhart, Carmen, 1988. "Real Exchange Rate and Commodity Prices in a Neoclassical Model," MPRA Paper 13188, University Library of Munich, Germany.
    14. Eduardo Borensztein & Carmen M. Reinhart, 1994. "The Macroeconomic Determinants of Commodity Prices," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 236-261, June.
    15. Stephen G Cecchetti & Richhild Moessner, 2008. "Commodity prices and inflation dynamics," BIS Quarterly Review, Bank for International Settlements, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.
    2. Byrne, Joseph P & Fazio, Giorgio & Fiess, Norbert, 2010. "Optimism and commitment: An elementary theory of bargaining and war," SIRE Discussion Papers 2010-102, Scottish Institute for Research in Economics (SIRE).
    3. repec:dau:papers:123456789/11663 is not listed on IDEAS
    4. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    6. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses," Koç University-TUSIAD Economic Research Forum Working Papers 1504, Koc University-TUSIAD Economic Research Forum.
    7. Klotz, Philipp & Lin, Tsoyu Calvin & Hsu, Shih-Hsun, 2014. "Global commodity prices, economic activity and monetary policy: The relevance of China," Resources Policy, Elsevier, vol. 42(C), pages 1-9.
    8. Arango-Thomas, Luis Eduardo & Chavarro-Sanchez, Ximena & González-Molano, Eliana Rocío, 2013. "Precios de bienes primarios e inflación en Colombia," Chapters, in: Rincón-Castro, Hernán & Velasco, Andrés M. (ed.), Flujos de capitales, choques externos y respuestas de política en países emergentes, chapter 12, pages 487-532, Banco de la Republica de Colombia.
    9. Libo Yin & Liyan Han, 2016. "Macroeconomic impacts on commodity prices: China vs. the United States," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 489-500, March.
    10. West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
    11. Pincheira, Pablo & Hardy, Nicolas, 2018. "Forecasting Base Metal Prices with Commodity Currencies," MPRA Paper 83564, University Library of Munich, Germany.
    12. Olivier Gervais & Ilan Kolet & René Lalonde, 2010. "A Larger Slice of a Growing Pie: the Role of Emerging Asia in Forecasting Commodity Prices," Money Affairs, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 75-95, January-J.
    13. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    14. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    15. Delle Chiaie, Simona & Ferrara, Laurent & Giannone, Domenico, 2018. "Common factors of commodity prices," Research Bulletin, European Central Bank, vol. 51.
    16. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    17. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    18. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    19. Gao, Lin & Süss, Stephan, 2015. "Market sentiment in commodity futures returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 84-103.
    20. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    21. Carolina Arteaga cabrales & Joan Camilo Granados Castro & Jair Ojeda Joya, 2011. "The Effect of Monetary Policy on Commodity Prices: Disentangling the Evidence for Individual Prices," BORRADORES DE ECONOMIA 009199, BANCO DE LA REPÚBLICA.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:11856. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.