IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/387.html
   My bibliography  Save this paper

Commodity prices, commodity currencies, and global economic developments

Author

Abstract

In this paper, we seek to produce forecasts of commodity price movements that can systematically improve on naive statistical benchmarks. We revisit how well changes in commodity currencies perform as potential efficient predictors of commodity prices, a view emphasized in the recent literature. In addition, we consider different types of factor-augmented models that use information from a large data set containing a variety of indicators of supply and demand conditions across major developed and developing countries. These factor-augmented models use either standard principal components or the more novel partial least squares (PLS) regression to extract dynamic factors from the data set. Our forecasting analysis considers ten alternative indices and sub-indices of spot prices for three different commodity classes across different periods. We find that, of all the approaches, the exchange-rate-based model and the PLS factor-augmented model are more likely to outperform the naive statistical benchmarks, although PLS factor-augmented models usually have a slight edge over the exchange-rate-based approach. However, across our range of commodity price indices we are not able to generate out-of-sample forecasts that, on average, are systematically more accurate than predictions based on a random walk or autoregressive specifications.

Suggested Citation

  • Jan J. J. Groen & Paolo Pesenti, 2009. "Commodity prices, commodity currencies, and global economic developments," Staff Reports 387, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:387
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr387.pdf
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr387.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    2. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    3. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, Oxford University Press, vol. 125(3), pages 1145-1194.
    4. Jan J. J. Groen & George Kapetanios, 2009. "Model selection criteria for factor-augmented regressions," Staff Reports 363, Federal Reserve Bank of New York.
    5. Eduardo Borensztein & Carmen M. Reinhart, 1994. "The Macroeconomic Determinants of Commodity Prices," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 236-261, June.
    6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    7. Margaret E. Slade & Henry Thille, 2006. "Commodity Spot Prices: An Exploratory Assessment of Market Structure and Forward‐Trading Effects," Economica, London School of Economics and Political Science, vol. 73(290), pages 229-256, May.
    8. Chakriya Bowman & Mr. Aasim M. Husain, 2004. "Forecasting Commodity Prices: Futures Versus Judgment," IMF Working Papers 2004/041, International Monetary Fund.
    9. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    10. Selim Elekdag & René Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2008. "Oil Price Movements and the Global Economy: A Model-Based Assessment," IMF Staff Papers, Palgrave Macmillan, vol. 55(2), pages 297-311, June.
    11. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    12. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    13. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    14. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    15. World Bank, 2009. "Global Economic Prospects 2009 : Commodities at the Crossroads," World Bank Publications - Books, The World Bank Group, number 2581.
    16. Reinhart, Carmen, 1988. "Real Exchange Rate and Commodity Prices in a Neoclassical Model," MPRA Paper 13188, University Library of Munich, Germany.
    17. John Y. Campbell, 2008. "Asset Prices and Monetary Policy," NBER Books, National Bureau of Economic Research, Inc, number camp06-1.
    18. Campbell, John Y. (ed.), 2008. "Asset Prices and Monetary Policy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226092119, October.
    19. Eduardo Borensztein & Carmen M. Reinhart, 1994. "The Macroeconomic Determinants of Commodity Prices," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 236-261, June.
    20. Stephen G Cecchetti & Richhild Moessner, 2008. "Commodity prices and inflation dynamics," BIS Quarterly Review, Bank for International Settlements, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    2. Klotz, Philipp & Lin, Tsoyu Calvin & Hsu, Shih-Hsun, 2014. "Global commodity prices, economic activity and monetary policy: The relevance of China," Resources Policy, Elsevier, vol. 42(C), pages 1-9.
    3. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.
    4. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    5. Byrne, Joseph P & Fazio, Giorgio & Fiess, Norbert, 2010. "Optimism and commitment: An elementary theory of bargaining and war," SIRE Discussion Papers 2010-102, Scottish Institute for Research in Economics (SIRE).
    6. repec:dau:papers:123456789/11663 is not listed on IDEAS
    7. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    9. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses," Policy Research Notes (PRNs) 94725, The World Bank.
    10. Selien De Schryder and Gert Peersman, 2015. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    12. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    13. Marcel Fratzscher & Daniel Schneider & Ine Van Robays, 2013. "Oil Prices, Exchange Rates and Asset Prices," Discussion Papers of DIW Berlin 1302, DIW Berlin, German Institute for Economic Research.
    14. repec:ipg:wpaper:19 is not listed on IDEAS
    15. Schalck, Christophe & Chenavaz, Régis, 2015. "Oil commodity returns and macroeconomic factors: A time-varying approach," Research in International Business and Finance, Elsevier, vol. 33(C), pages 290-303.
    16. Kilian, Lutz & Zhou, Xiaoqing, 2022. "Oil prices, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 126(C).
    17. Kallis, Giorgos & Sager, Jalel, 2017. "Oil and the economy: A systematic review of the literature for ecological economists," Ecological Economics, Elsevier, vol. 131(C), pages 561-571.
    18. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    19. repec:dau:papers:123456789/11692 is not listed on IDEAS
    20. Baffes, John & Dennis, Allen, 2013. "Long-term drivers of food prices," Policy Research Working Paper Series 6455, The World Bank.
    21. Baffes, John & Haniotis, Tassos, 2010. "Placing the 2006/08 commodity price boom into perspective," Policy Research Working Paper Series 5371, The World Bank.
    22. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    23. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    24. Adrian, Tobias & Etula, Erkko & Groen, Jan J.J., 2011. "Financial amplification of foreign exchange risk premia," European Economic Review, Elsevier, vol. 55(3), pages 354-370, April.

    More about this item

    Keywords

    Forecasting; Commodity exchanges; Regression analysis; Foreign exchange rates; Commodity futures;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:387. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.