IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202043.html
   My bibliography  Save this paper

The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach

Author

Listed:
  • Afees A. Salisu

    () (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Business Administration, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Rangan Gupta

    () (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Elie Bouri

    () (USEK Business School, Holy Spirit University of Kaslik, Jounieh, Lebanon)

  • Qiang Ji

    () (Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China; School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In this study, we examine the role of global economic conditions in forecasting gold market volatility using alternative measures. Based on the available data frequency for the relevant series, we adopt the GARCH-MIDAS approach which allows for mixed data frequencies. We find that global economic conditions contribute significantly to gold market volatility albeit with mixed outcomes. While the results lend support to the safe-haven properties of the gold market, the outcome is influenced by the choice of measure of global economic conditions. For completeness, we extend the analyses to other precious metals such as silver, platinum, palladium, and rhodium and find that global economic conditions forecast the volatility of gold returns better than other precious metals. Our results are robust to multiple forecast horizons and offer useful insights into plausible investment choices in the precious metals market.

Suggested Citation

  • Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach," Working Papers 202043, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202043
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    2. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    3. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    4. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019. "Another look at the energy-growth nexus: New insights from MIDAS regressions," Energy, Elsevier, vol. 174(C), pages 69-84.
    5. Bampinas, Georgios & Panagiotidis, Theodore, 2015. "Are gold and silver a hedge against inflation? A two century perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 267-276.
    6. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    7. Brian Lucey & Edel Tully, 2006. "Seasonality, risk and return in daily COMEX gold and silver data 1982-2002," Applied Financial Economics, Taylor & Francis Journals, vol. 16(4), pages 319-333.
    8. Baumeister, Christiane & Korobilis, Dimitris & Lee, Thomas K., 2020. "Energy Markets and Global Economic Conditions," CEPR Discussion Papers 14580, C.E.P.R. Discussion Papers.
    9. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    10. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    11. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, Open Access Journal, vol. 12(17), pages 1-17, September.
    12. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
    13. Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
    14. Narayan, Paresh Kumar & Narayan, Seema & Sharma, Susan Sunila, 2013. "An analysis of commodity markets: What gain for investors?," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3878-3889.
    15. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    16. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    17. Boako, Gideon & Tiwari, Aviral Kumar & Ibrahim, Muazu & Ji, Qiang, 2019. "Analysing dynamic dependence between gold and stock returns: Evidence using stochastic and full-range tail dependence copula models," Finance Research Letters, Elsevier, vol. 31(C).
    18. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized gold volatility: Is there a role of geopolitical risks?," Finance Research Letters, Elsevier, vol. 35(C).
    19. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    20. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    21. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    22. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    23. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    24. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    25. Elie Bouri & Naji Jalkh, 2019. "Conditional quantiles and tail dependence in the volatilities of gold and silver," International Economics, CEPII research center, issue 157, pages 117-133.
    26. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
    27. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    28. Francesco Ravazzolo & Joaquin Vespignani, 2020. "World steel production: A new monthly indicator of global real economic activity," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 743-766, May.
    29. Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
    30. Steven J. Cochran & Iqbal Mansur & Babatunde Odusami, 2016. "Conditional higher order moments in metal asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 151-167, January.
    31. He, Zhen & O'Connor, Fergal & Thijssen, Jacco, 2018. "Is gold a Sometime Safe Haven or an Always Hedge for equity investors? A Markov-Switching CAPM approach for US and UK stock indices," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 30-37.
    32. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    33. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    34. Nicholas Apergis & Christina Christou & James E. Payne, 2014. "Precious metal markets, stock markets and the macroeconomic environment: a FAVAR model approach," Applied Financial Economics, Taylor & Francis Journals, vol. 24(10), pages 691-703, May.
    35. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
    36. Roache, Shaun K. & Rossi, Marco, 2010. "The effects of economic news on commodity prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 377-385, August.
    37. Hussain Shahzad, Syed Jawad & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2020. "Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin," Economic Modelling, Elsevier, vol. 87(C), pages 212-224.
    38. James D. Hamilton, 2019. "Measuring Global Economic Activity," NBER Working Papers 25778, National Bureau of Economic Research, Inc.
    39. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    40. Benjamin R. Auer, 2015. "Superstitious seasonality in precious metals markets? Evidence from GARCH models with time-varying skewness and kurtosis," Applied Economics, Taylor & Francis Journals, vol. 47(27), pages 2844-2859, June.
    41. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    42. Osamah Al-Khazali & Elie Bouri & David Roubaud, 2018. "The impact of positive and negative macroeconomic news surprises: Gold versus Bitcoin," Economics Bulletin, AccessEcon, vol. 38(1), pages 373-382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    2. Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "A Note on Oil Price Shocks and the Forecastability of Gold Realized Volatility," Working Papers 202010, University of Pretoria, Department of Economics.
    3. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions," Working Papers 202051, University of Pretoria, Department of Economics.
    4. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    5. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    6. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
    7. Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
    8. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    9. Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
    10. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    11. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Maitra, Debasish & Al-Jarrah, Idries Mohammad Wanas, 2019. "Portfolio management and dependencies among precious metal markets: Evidence from a Copula quantile-on-quantile approach," Resources Policy, Elsevier, vol. 64(C).
    12. Tarek Chebbi, 2021. "The response of precious metal futures markets to unconventional monetary surprises in the presence of uncertainty," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1897-1916, April.
    13. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    14. Bao, Dun, 2020. "Dynamics and correlation of platinum-group metals spot prices," Resources Policy, Elsevier, vol. 68(C).
    15. Tim Pullen & Karen Benson & Robert Faff, 2014. "A Comparative Analysis of the Investment Characteristics of Alternative Gold Assets," Abacus, Accounting Foundation, University of Sydney, vol. 50(1), pages 76-92, March.
    16. Smales, L.A. & Lucey, B.M., 2019. "The influence of investor sentiment on the monetary policy announcement liquidity response in precious metal markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 60(C), pages 19-38.
    17. Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
    18. Wen, Danyan & Wang, Yudong & Ma, Chaoqun & Zhang, Yaojie, 2020. "Information transmission between gold and financial assets: Mean, volatility, or risk spillovers?," Resources Policy, Elsevier, vol. 69(C).
    19. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    20. Trabelsi, Nader & Gozgor, Giray & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2021. "Effects of Price of Gold on Bombay Stock Exchange Sectoral Indices: New Evidence for Portfolio Risk Management," Research in International Business and Finance, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Precious Metals Volatility; Global Economic Conditions; Mixed-Frequency;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202043. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.