IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/115614.html
   My bibliography  Save this paper

The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures

Author

Listed:
  • Asai, M.
  • Gupta, R.
  • McAleer, M.J.

Abstract

The paper investigates the impact of jumps in forecasting co-volatility in the presence of leverage effects. We modify the jump-robust covariance estimator of Koike (2016), such that the estimated matrix is positive definite. Using this approach, we can disentangle the estimates of the integrated co-volatility matrix and jump variations from the quadratic covariation matrix. Empirical results for daily crude oil and gold futures show that the co-jumps of the two futures have significant impacts on future co-volatility, but that the impact is negligible in forecasting weekly and monthly horizons

Suggested Citation

  • Asai, M. & Gupta, R. & McAleer, M.J., 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Econometric Institute Research Papers EI2019-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:115614
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/115614/EI2019-16.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    3. Bassam Fattouh, Lutz Kilian, and Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    5. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    6. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    7. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    8. Mehmet Balcilar & Zeynel Abidin Ozdemir & Muhammad Shahbaz, 2019. "On the time‐varying links between oil and gold: New insights from the rolling and recursive rolling approaches," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 1047-1065, July.
    9. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    10. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    11. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    12. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    13. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    14. Koike, Yuta, 2016. "Estimation Of Integrated Covariances In The Simultaneous Presence Of Nonsynchronicity, Microstructure Noise And Jumps," Econometric Theory, Cambridge University Press, vol. 32(3), pages 533-611, June.
    15. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    17. Semei Coronado & Rebeca Jim'enez-Rodr'iguez & Omar Rojas, 2015. "An empirical analysis of the relationships between crude oil, gold and stock markets," Papers 1510.07599, arXiv.org, revised May 2016.
    18. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    19. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    20. Bahloul, Walid & Balcilar, Mehmet & Cunado, Juncal & Gupta, Rangan, 2018. "The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test," Journal of Multinational Financial Management, Elsevier, vol. 45(C), pages 52-71.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Yaya, OlaOluwa S. & Tumala, Mohammed M. & Udomboso, Christopher G., 2016. "Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis," Resources Policy, Elsevier, vol. 49(C), pages 273-281.
    23. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    24. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    25. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    26. Reboredo, Juan C., 2013. "Is gold a hedge or safe haven against oil price movements?," Resources Policy, Elsevier, vol. 38(2), pages 130-137.
    27. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
    28. Büyükşahin, Bahattin & Robe, Michel A., 2014. "Speculators, commodities and cross-market linkages," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 38-70.
    29. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    30. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    31. Tao, Minjing & Wang, Yazhen & Yao, Qiwei & Zou, Jian, 2011. "Large Volatility Matrix Inference via Combining Low-Frequency and High-Frequency Approaches," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1025-1040.
    32. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    33. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    34. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    35. Tiwari, Aviral Kumar & Cunado, Juncal & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility spillovers across global asset classes: Evidence from time and frequency domains," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 194-202.
    36. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    37. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    38. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
    39. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    40. Semei Coronado, Rebeca Jiménez-Rodrguez, and Omar Rojas, 2018. "An Empirical Analysis of the Relationships between Crude Oil, Gold and Stock Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    41. repec:hal:journl:peer-00741630 is not listed on IDEAS
    42. Bampinas Georgios & Panagiotidis Theodore, 2015. "On the relationship between oil and gold before and after financial crisis: linear, nonlinear and time-varying causality testing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 657-668, December.
    43. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    2. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    3. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    6. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    7. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    8. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    9. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    10. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    11. Jiqian Wang & Feng Ma & M.I.M. Wahab & Dengshi Huang, 2021. "Forecasting China's Crude Oil Futures Volatility: The Role of the Jump, Jumps Intensity, and Leverage Effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 921-941, August.
    12. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    13. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    14. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    15. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    16. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    17. Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
    18. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    19. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    20. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.

    More about this item

    Keywords

    Commodity Markets; Co-volatility; Forecasting; Jump; Leverage Effects; Realized; Covariance; Threshold Estimation.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:115614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.