IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v24y2013icp42-65.html
   My bibliography  Save this article

Financialization, crisis and commodity correlation dynamics

Author

Listed:
  • Silvennoinen, Annastiina
  • Thorp, Susan

Abstract

Stronger investor interest in commodities may create closer integration with conventional asset markets. We estimate sudden and gradual changes in correlation between stocks, bonds and commodity futures returns driven by observable financial variables and time, using double smooth transition conditional correlation (DSTCC–GARCH) models. Most correlations begin the 1990s near zero but closer integration emerges around the early 2000s and reaches peaks during the recent crisis. Diversification benefits to investors across equity, bond and stock markets were significantly reduced. Increases in VIX and financial traders’ short open interest raise futures returns volatility for many commodities. Higher VIX also increases commodity returns correlation with equity returns for about half the pairs, indicating closer integration.

Suggested Citation

  • Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
  • Handle: RePEc:eee:intfin:v:24:y:2013:i:c:p:42-65
    DOI: 10.1016/j.intfin.2012.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443112001059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2012.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 1-23.
    2. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(4), pages 373-411, Fall.
    3. Jeffrey A Frankel & Andrew K Rose, 2010. "Determinants of Agricultural and Mineral Commodity Prices," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    4. Ke Tang & Wei Xiong, 2010. "Index Investment and Financialization of Commodities," NBER Working Papers 16385, National Bureau of Economic Research, Inc.
    5. Murray Carlson & Zeigham Khokher & Sheridan Titman, 2007. "Equilibrium Exhaustible Resource Price Dynamics," Journal of Finance, American Finance Association, vol. 62(4), pages 1663-1703, August.
    6. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    7. Dietrich Domanski & Alexandra Heath, 2007. "Financial investors and commodity markets," BIS Quarterly Review, Bank for International Settlements, March.
    8. Coudert, Virginie & Gex, Mathieu, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 167-184, March.
    9. Geert Bekaert & Campbell R. Harvey & Christian T. Lundblad & Stephan Siegel, 2011. "What Segments Equity Markets?," Review of Financial Studies, Society for Financial Studies, vol. 24(12), pages 3841-3890.
    10. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    11. Hong, Harrison & Yogo, Motohiro, 2012. "What does futures market interest tell us about the macroeconomy and asset prices?," Journal of Financial Economics, Elsevier, vol. 105(3), pages 473-490.
    12. Wai Mun Fong & Kim Hock See, 2001. "Modelling the conditional volatility of commodity index futures as a regime switching process," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 133-163.
    13. Cheung, C. Sherman & Miu, Peter, 2010. "Diversification benefits of commodity futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 451-474, December.
    14. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
    15. Ing-Haw Cheng & Andrei Kirilenko & Wei Xiong, 2015. "Convective Risk Flows in Commodity Futures Markets," Review of Finance, European Finance Association, vol. 19(5), pages 1733-1781.
    16. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    17. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    18. Jörg Mayer, 2009. "The Growing Interdependence Between Financial And Commodity Markets," UNCTAD Discussion Papers 195, United Nations Conference on Trade and Development.
    19. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    20. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    21. V. Coudert & M. Gex, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Post-Print halshs-00321667, HAL.
    22. Pindyck, Robert S, 1993. "The Present Value Model of Rational Commodity Pricing," Economic Journal, Royal Economic Society, vol. 103(418), pages 511-530, May.
    23. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    24. Daskalaki, Charoula & Skiadopoulos, George, 2011. "Should investors include commodities in their portfolios after all? New evidence," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2606-2626, October.
    25. Vansteenkiste, Isabel, 2009. "How important are common factors in driving non-fuel commodity prices? A dynamic factor analysis," Working Paper Series 1072, European Central Bank.
    26. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    27. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    28. Albert S. Kyle & Wei Xiong, 2001. "Contagion as a Wealth Effect," Journal of Finance, American Finance Association, vol. 56(4), pages 1401-1440, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    2. Gao, Lin & Süss, Stephan, 2015. "Market sentiment in commodity futures returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 84-103.
    3. Ing-Haw Cheng & Wei Xiong, 2014. "Financialization of Commodity Markets," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 419-441, December.
    4. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    5. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    6. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    7. Gurdip Bakshi & Xiaohui Gao & Alberto G. Rossi, 2019. "Understanding the Sources of Risk Underlying the Cross Section of Commodity Returns," Management Science, INFORMS, vol. 65(2), pages 619-641, February.
    8. repec:dau:papers:123456789/11382 is not listed on IDEAS
    9. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    10. Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
    11. Sofiane Aboura & Julien Chevallier, 2014. "Cross‐market spillovers with ‘volatility surprise’," Review of Financial Economics, John Wiley & Sons, vol. 23(4), pages 194-207, November.
    12. Davide, Marinella & Vesco, Paola, 2016. "Alternative Approaches for Rating INDCs: a Comparative Analysis," MITP: Mitigation, Innovation and Transformation Pathways 232716, Fondazione Eni Enrico Mattei (FEEM).
    13. Mohammad Isleimeyyeh, 2020. "The role of financial investors in determining the commodity futures risk premium," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(9), pages 1375-1397, September.
    14. Yang, Fan, 2013. "Investment shocks and the commodity basis spread," Journal of Financial Economics, Elsevier, vol. 110(1), pages 164-184.
    15. Aboura, Sofiane & Chevallier, Julien, 2015. "Volatility returns with vengeance: Financial markets vs. commodities," Research in International Business and Finance, Elsevier, vol. 33(C), pages 334-354.
    16. Adams, Zeno & Glück, Thorsten, 2013. "Financialization in Commodity Markets: Disentangling the Crisis from the Style Effect," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79949, Verein für Socialpolitik / German Economic Association.
    17. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    18. repec:ipg:wpaper:19 is not listed on IDEAS
    19. repec:ipg:wpaper:2014-469 is not listed on IDEAS
    20. Adams, Zeno & Glück, Thorsten, 2015. "Financialization in commodity markets: A passing trend or the new normal?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 93-111.
    21. Pappas, Vasileios & Ingham, Hilary & Izzeldin, Marwan & Steele, Gerry, 2016. "Will the crisis “tear us apart”? Evidence from the EU," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 346-360.
    22. Acharya, Viral V. & Lochstoer, Lars A. & Ramadorai, Tarun, 2013. "Limits to arbitrage and hedging: Evidence from commodity markets," Journal of Financial Economics, Elsevier, vol. 109(2), pages 441-465.
    23. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.

    More about this item

    Keywords

    Smooth transition; Financial integration; Global financial crisis;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:24:y:2013:i:c:p:42-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/intfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.