IDEAS home Printed from https://ideas.repec.org/p/qut/auncer/2015_07.html
   My bibliography  Save this paper

Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics

Author

Listed:
  • Annastiina Silvennoinen

    (QUT)

  • Susan Thorp

    (Sydney Uni)

Abstract

Correlations between oil and agricultural commodities have varied over previous decades, impacted by renewable fuels policy and turbulent economic conditions. We estimate smooth transition conditional correlation models for 12 agricultural commodities and WTI crude oil. While a structural change in correlations occurred concurrently with the introduction of biofuel policy, oil and food price levels are also key influences. High correlation between biofuel feedstocks and oil is more likely to occur when food and oil price levels are high. Correlation with oil returns is strong for biofuel feedstocks, unlike with other agricultural futures, suggesting limited contagion from energy to food markets.

Suggested Citation

  • Annastiina Silvennoinen & Susan Thorp, 2015. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," NCER Working Paper Series 109, National Centre for Econometric Research.
  • Handle: RePEc:qut:auncer:2015_07
    as

    Download full text from publisher

    File URL: http://www.ncer.edu.au/papers/documents/WP109.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    2. Thomas W. Hertel & Jayson Beckman, 2011. "Commodity Price Volatility in the Biofuel Era: An Examination of the Linkage between Energy and Agricultural Markets," NBER Chapters, in: The Intended and Unintended Effects of US Agricultural and Biotechnology Policies, pages 189-221, National Bureau of Economic Research, Inc.
    3. Saghaian, Sayed H., 2010. "The Impact of the Oil Sector on Commodity Prices: Correlation or Causation?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(3), pages 477-485, August.
    4. Büyükşahin, Bahattin & Robe, Michel A., 2014. "Speculators, commodities and cross-market linkages," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 38-70.
    5. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    6. Teresa Serra, 2013. "Time-series econometric analyses of biofuel-related price volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 53-62, November.
    7. Xiaodong Du and Lihong Lu McPhail, 2012. "Inside the Black Box: the Price Linkage and Transmission between Energy and Agricultural Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Stefan Busse & Bernhard Brümmer & Rico Ihle, 2012. "Price formation in the German biodiesel supply chain: a Markov-switching vector error-correction modeling approach," Agricultural Economics, International Association of Agricultural Economists, vol. 43(5), pages 545-560, September.
    9. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    10. Deb, Partha & Trivedi, Pravin K & Varangis, Panayotis, 1996. "The Excess Co-movement of Commodity Prices Reconsidered," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 275-291, May-June.
    11. Jean-Paul Chavas & David Hummels & Brian D. Wright, 2014. "The Economics of Food Price Volatility," NBER Books, National Bureau of Economic Research, Inc, number chav12-1, March.
    12. Ciaian, Pavel & Kancs, d'Artis, 2011. "Food, energy and environment: Is bioenergy the missing link?," Food Policy, Elsevier, vol. 36(5), pages 571-580, October.
    13. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    14. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    15. Gal Hochman & Deepak Rajagopal & David Zilberman, 2010. "Are Biofuels the Culprit? OPEC, Food, and Fuel," American Economic Review, American Economic Association, vol. 100(2), pages 183-187, May.
    16. Marcello Pericoli & Massimo Sbracia, 2003. "A Primer on Financial Contagion," Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 571-608, September.
    17. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(1), pages 1-23.
    18. Busse, S. & Brümmer, B. & Ihle, R., 2011. "Investigating rapeseed price volatilities in the course of the food crisis," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    19. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    20. Derek Headey & Sangeetha Malaiyandi & Shenggen Fan, 2010. "Navigating the perfect storm: reflections on the food, energy, and financial crises," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 217-228, November.
    21. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    22. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    23. Chavas, Jean-Paul & Hummels, David & Wright, Brian D. (ed.), 2014. "The Economics of Food Price Volatility," National Bureau of Economic Research Books, University of Chicago Press, number 9780226128924, December.
    24. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    25. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    26. Thompson, Wyatt & Meyer, Seth & Westhoff, Pat, 2009. "How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?," Energy Policy, Elsevier, vol. 37(2), pages 745-749, February.
    27. Ing-Haw Cheng & Andrei Kirilenko & Wei Xiong, 2015. "Convective Risk Flows in Commodity Futures Markets," Review of Finance, European Finance Association, vol. 19(5), pages 1733-1781.
    28. Walter Enders & Matthew T. Holt, 2012. "Sharp Breaks or Smooth Shifts? an Investigation of the Evolution of Primary Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 659-673.
    29. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    30. Geert Bekaert & Campbell R. Harvey & Christian T. Lundblad & Stephan Siegel, 2011. "What Segments Equity Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 24(12), pages 3841-3890.
    31. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    32. Murray Carlson & Zeigham Khokher & Sheridan Titman, 2007. "Equilibrium Exhaustible Resource Price Dynamics," Journal of Finance, American Finance Association, vol. 62(4), pages 1663-1703, August.
    33. Susan Thorp & George Milunovich, 2007. "Symmetric Versus Asymmetric Conditional Covariance Forecasts: Does It Pay To Switch?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 30(3), pages 355-377, September.
    34. Coudert, Virginie & Gex, Mathieu, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 167-184, March.
    35. Wai Mun Fong & Kim Hock See, 2001. "Modelling the conditional volatility of commodity index futures as a regime switching process," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 133-163.
    36. Mr. C. John McDermott & Mr. Alasdair Scott & Mr. Paul Cashin, 1999. "The Myth of Comoving Commodity Prices," IMF Working Papers 1999/169, International Monetary Fund.
    37. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    38. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    39. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    40. V. Coudert & M. Gex, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Post-Print halshs-00321667, HAL.
    41. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    42. Chunrong Ai & Arjun Chatrath & Frank Song, 2006. "On the Comovement of Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 574-588.
    43. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiying Wang & Ying Yuan & Tianyang Wang, 2021. "The dynamics of cross‐boundary fire—Financial contagion between the oil and stock markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1655-1673, October.
    2. Leong, Soon Heng, 2021. "Global crude oil and the Chinese oil-intensive sectors: A comprehensive causality study," Energy Economics, Elsevier, vol. 103(C).
    3. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    4. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    5. Tang, Yusui & Ma, Feng, 2023. "The volatility of natural resources implications for sustainable development: Crude oil volatility prediction based on the multivariate structural regime switching," Resources Policy, Elsevier, vol. 83(C).
    6. Serletis, Apostolos & Xu, Libo, 2019. "The ethanol mandate and crude oil and biofuel agricultural commodity price dynamics," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    7. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    8. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    9. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    10. Robert J. Powell & Duc H. Vo & Thach N. Pham, 2018. "Economic cycles and downside commodities risk," Applied Economics Letters, Taylor & Francis Journals, vol. 25(4), pages 258-263, February.
    11. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    12. Clark Lundberg & Tristan Skolrud & Bahram Adrangi & Arjun Chatrath, 2021. "Oil Price Pass through to Agricultural Commodities†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 721-742, March.
    13. Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
    14. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    15. Qian, Lihua & Zeng, Qing & Li, Tao, 2022. "Geopolitical risk and oil price volatility: Evidence from Markov-switching model," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 29-38.
    16. Śmiech, Sławomir & Papież, Monika & Fijorek, Kamil & Dąbrowski, Marek A., 2019. "What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-32.
    17. Liu, Pan & Vedenov, Dmitry & Power, Gabriel J., 2020. "Commodity financialization and sector ETFs: Evidence from crude oil futures," Research in International Business and Finance, Elsevier, vol. 51(C).
    18. Mishra, Aswini Kumar & Arunachalam, Vairam & Olson, Dennis & Patnaik, Debasis, 2023. "Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 82(C).
    19. Chen, Peng & He, Limin & Yang, Xuan, 2021. "On interdependence structure of China's commodity market," Resources Policy, Elsevier, vol. 74(C).
    20. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    21. Yahya, Muhammad & Dutta, Anupam & Bouri, Elie & Wadström, Christoffer & Uddin, Gazi Salah, 2022. "Dependence structure between the international crude oil market and the European markets of biodiesel and rapeseed oil," Renewable Energy, Elsevier, vol. 197(C), pages 594-605.
    22. Gazi Salah Uddin & Maziar Sahamkhadam & Muhammad Yahya & Ou Tang, 2023. "Investment opportunities in the energy market: What can be learnt from different energy sectors," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3611-3636, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    3. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    4. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    5. Cornelis Gardebroek & Manuel A. Hernandez & Miguel Robles, 2016. "Market interdependence and volatility transmission among major crops," Agricultural Economics, International Association of Agricultural Economists, vol. 47(2), pages 141-155, March.
    6. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    7. Nicola, Francesca de & De Pace, Pierangelo & Hernandez, Manuel A., 2016. "Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment," Energy Economics, Elsevier, vol. 57(C), pages 28-41.
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    10. repec:dau:papers:123456789/11382 is not listed on IDEAS
    11. Davide, Marinella & Vesco, Paola, 2016. "Alternative Approaches for Rating INDCs: a Comparative Analysis," MITP: Mitigation, Innovation and Transformation Pathways 232716, Fondazione Eni Enrico Mattei (FEEM).
    12. repec:ipg:wpaper:19 is not listed on IDEAS
    13. Ing-Haw Cheng & Wei Xiong, 2014. "Financialization of Commodity Markets," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 419-441, December.
    14. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    15. Christopher L. Gilbert & Harriet Kasidi Mugera, 2020. "Competitive Storage, Biofuels and the Corn Price," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(2), pages 384-411, June.
    16. Qadan, Mahmoud & Idilbi-Bayaa, Yasmeen, 2020. "Risk appetite and oil prices," Energy Economics, Elsevier, vol. 85(C).
    17. Edgardo Cayón, 2014. "The Effects of Contagion During the Global Financial Crisis in Government-Regulated and Sponsored Assets in Emerging Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2014.
    18. repec:awi:wpaper:0665 is not listed on IDEAS
    19. Behmiri, Niaz Bashiri & Manera, Matteo & Nicolini, Marcella, 2016. "Understanding Dynamic Conditional Correlations between Commodities Futures Markets," ESP: Energy Scenarios and Policy 232223, Fondazione Eni Enrico Mattei (FEEM).
    20. Matteo Manera, Marcella Nicolini, and Ilaria Vignati, 2013. "Financial Speculation in Energy and Agriculture Futures Markets: A Multivariate GARCH Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    21. Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
    22. Gao, Lin & Süss, Stephan, 2015. "Market sentiment in commodity futures returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 84-103.
    23. Koch, Nicolas, 2014. "Tail events: A new approach to understanding extreme energy commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 195-205.
    24. Spencer, Simon & Bredin, Don & Conlon, Thomas, 2018. "Energy and agricultural commodities revealed through hedging characteristics: Evidence from developing and mature markets," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 1-20.

    More about this item

    Keywords

    Smooth transition conditional correlation; Structural breaks; Return comovement;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2015_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: School of Economics and Finance (email available below). General contact details of provider: https://edirc.repec.org/data/ncerrau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.