IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v35y2020ics154461231930529x.html
   My bibliography  Save this article

Forecasting realized gold volatility: Is there a role of geopolitical risks?

Author

Listed:
  • Gkillas, Konstantinos
  • Gupta, Rangan
  • Pierdzioch, Christian

Abstract

We use a quantile-regression heterogeneous autoregressive realized volatility (QR-HAR-RV) model to study whether geopolitical risks have predictive value in sample and out-of-sample for realized gold-returns volatility estimated from intradaily data. We consider overall geopolitical risks along with a decomposition into actual risks (i.e., acts) and threats, and we control for overall the impact of economic policy uncertainty (EPU). We find that, after controlling for EPU, the components of geopolitical risks have predictive power for realized volatility mainly at a longer forecast horizon when we account for the potential asymmetry of the loss function a forecaster uses to evaluate forecasts.

Suggested Citation

  • Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized gold volatility: Is there a role of geopolitical risks?," Finance Research Letters, Elsevier, vol. 35(C).
  • Handle: RePEc:eee:finlet:v:35:y:2020:i:c:s154461231930529x
    DOI: 10.1016/j.frl.2019.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461231930529X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
    3. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
    4. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2017. "On exchange-rate movements and gold-price fluctuations: evidence for gold-producing countries from a nonparametric causality-in-quantiles test," International Economics and Economic Policy, Springer, vol. 14(4), pages 691-700, October.
    5. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    6. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    7. Paolo Zagaglia & Massimiliano Marzo, 2013. "Gold and the U.S. dollar: tales from the turmoil," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 571-582, March.
    8. Baur Dirk G. & Dimpfl Thomas, 2019. "Think again: volatility asymmetry and volatility persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-19, February.
    9. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    10. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    11. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2015. "A real-time quantile-regression approach to forecasting gold returns under asymmetric loss," Resources Policy, Elsevier, vol. 45(C), pages 299-306.
    12. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    13. Bouoiyour, Jamal & Selmi, Refk & Wohar, Mark E., 2018. "Measuring the response of gold prices to uncertainty: An analysis beyond the mean," Economic Modelling, Elsevier, vol. 75(C), pages 105-116.
    14. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    15. Joscha Beckmann & Theo Berger & Robert Czudaj, 2019. "Gold price dynamics and the role of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 663-681, April.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.
    18. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
    19. Agyei-Ampomah, Sam & Gounopoulos, Dimitrios & Mazouz, Khelifa, 2014. "Does gold offer a better protection against losses in sovereign debt bonds than other metals?," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 507-521.
    20. Beckmann, Joscha & Berger, Theo & Czudaj, Robert, 2015. "Does gold act as a hedge or a safe haven for stocks? A smooth transition approach," Economic Modelling, Elsevier, vol. 48(C), pages 16-24.
    21. Reboredo, Juan C., 2013. "Is gold a hedge or safe haven against oil price movements?," Resources Policy, Elsevier, vol. 38(2), pages 130-137.
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    23. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    24. Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
    2. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020. "The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach," Research in International Business and Finance, Elsevier, vol. 54(C).
    3. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    4. Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Stock-Market Volatility: Do Industry Returns have Predictive Value?," Working Papers 2020107, University of Pretoria, Department of Economics.
    5. Xu, Yahua & Bouri, Elie & Saeed, Tareq & Wen, Zhuzhu, 2020. "Intraday return predictability: Evidence from commodity ETFs and their related volatility indices," Resources Policy, Elsevier, vol. 69(C).
    6. Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "A Note on Oil Price Shocks and the Forecastability of Gold Realized Volatility," Working Papers 202010, University of Pretoria, Department of Economics.
    7. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    8. Afees A. Salisu & Juncal Cunado & Rangan Gupta, 2020. "Geopolitical Risks and Historical Exchange Rate Volatility of the BRICS," Working Papers 2020105, University of Pretoria, Department of Economics.
    9. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    10. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2020. "The effects of geopolitical risks on the stock dynamics of China's rare metals: A TVP-VAR analysis," Resources Policy, Elsevier, vol. 68(C).
    11. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    12. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    2. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    3. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    4. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    5. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    6. Baur, Dirk G. & Smales, Lee A., 2020. "Hedging geopolitical risk with precious metals," Journal of Banking & Finance, Elsevier, vol. 117(C).
    7. Boubaker, Heni & Cunado, Juncal & Gil-Alana, Luis A. & Gupta, Rangan, 2020. "Global crises and gold as a safe haven: Evidence from over seven and a half centuries of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    9. Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "A Note on Oil Price Shocks and the Forecastability of Gold Realized Volatility," Working Papers 202010, University of Pretoria, Department of Economics.
    10. Balcilar, Mehmet & Gupta, Rangan & Pierdzioch, Christian, 2016. "Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test," Resources Policy, Elsevier, vol. 49(C), pages 74-80.
    11. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, Open Access Journal, vol. 12(17), pages 1-17, September.
    12. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "Are precious metals a hedge against exchange-rate movements? An empirical exploration using bayesian additive regression trees," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 27-38.
    13. Bonato, Matteo & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2018. "Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach," Resources Policy, Elsevier, vol. 57(C), pages 196-212.
    14. Bouoiyour, Jamal & Selmi, Refk & Wohar, Mark E., 2018. "Measuring the response of gold prices to uncertainty: An analysis beyond the mean," Economic Modelling, Elsevier, vol. 75(C), pages 105-116.
    15. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    16. Joscha Beckmann & Theo Berger & Robert Czudaj, 2019. "Gold price dynamics and the role of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 663-681, April.
    17. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    18. Christian Pierdzioch & Marian Risse, 2020. "Forecasting precious metal returns with multivariate random forests," Empirical Economics, Springer, vol. 58(3), pages 1167-1184, March.
    19. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-11, May.
    20. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:35:y:2020:i:c:s154461231930529x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/frl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.