IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_7902.html
   My bibliography  Save this paper

Facts and Fiction in Oil Market Modeling

Author

Listed:
  • Lutz Kilian

Abstract

Baumeister and Hamilton (2019a) assert that every critique of their work on oil markets by Kilian and Zhou (2019a) is without merit. In addition, they make the case that key aspects of the economic and econometric analysis in the widely used oil market model of Kilian and Murphy (2014) and its precursors are incorrect. Their critiques are also directed at other researchers who have worked in this area and, more generally, extend to research using structural VAR models outside of energy economics. The purpose of this paper is to help the reader understand what the real issues are in this debate. The focus is not only on correcting important misunderstandings in the recent literature, but on the substantive and methodological insights generated by this exchange, which are of broader interest to applied researchers.

Suggested Citation

  • Lutz Kilian, 2019. "Facts and Fiction in Oil Market Modeling," CESifo Working Paper Series 7902, CESifo.
  • Handle: RePEc:ces:ceswps:_7902
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp7902.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kilian, Lutz, 2019. "Measuring global real economic activity: Do recent critiques hold up to scrutiny?," Economics Letters, Elsevier, vol. 178(C), pages 106-110.
    2. Lutz Kilian, 2017. "The Impact of the Fracking Boom on Arab Oil Producers," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    3. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    4. Kilian, Lutz & Lee, Thomas K., 2014. "Quantifying the speculative component in the real price of oil: The role of global oil inventories," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 71-87.
    5. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    6. Kilian, Lutz, 2022. "Understanding the estimation of oil demand and oil supply elasticities," Energy Economics, Elsevier, vol. 107(C).
    7. Xiaoqing Zhou, 2020. "Refining the workhorse oil market model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 130-140, January.
    8. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    9. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108400008.
    10. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    11. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    12. Baumeister, Christiane & Hamilton, James D., 2020. "Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions," Journal of International Money and Finance, Elsevier, vol. 109(C).
    13. Jamie L. Cross & Bao H. Nguyen & Trung Duc Tran, 2022. "The role of precautionary and speculative demand in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 882-895, August.
    14. Kilian, Lutz & Zhou, Xiaoqing, 2022. "Oil prices, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 126(C).
    15. Juan Antolín-Díaz & Juan F. Rubio-Ramírez, 2018. "Narrative Sign Restrictions for SVARs," American Economic Review, American Economic Association, vol. 108(10), pages 2802-2829, October.
    16. Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019. "Real‐time forecast combinations for the oil price," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
    17. Soren T. Anderson & Ryan Kellogg & Stephen W. Salant, 2018. "Hotelling under Pressure," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 984-1026.
    18. Caner, M. & Kilian, L., 2001. "Size distortions of tests of the null hypothesis of stationarity: evidence and implications for the PPP debate," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 639-657, October.
    19. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    20. Francesco Ravazzolo & Joaquin Vespignani, 2020. "World steel production: A new monthly indicator of global real economic activity," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 743-766, May.
    21. Hilde C. Bjørnland & Frode Martin Nordvik & Maximilian Rohrer, 2021. "Supply flexibility in the shale patch: Evidence from North Dakota," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 273-292, April.
    22. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    23. Ana María Herrera & Sandeep Kumar Rangaraju, 2020. "The effect of oil supply shocks on US economic activity: What have we learned?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 141-159, March.
    24. Montiel Olea, José L. & Stock, James H. & Watson, Mark W., 2021. "Inference in Structural Vector Autoregressions identified with an external instrument," Journal of Econometrics, Elsevier, vol. 225(1), pages 74-87.
    25. Nonejad, Nima, 2020. "An observation regarding Hamilton’s recent criticisms of Kilian’s global real economic activity index," Economics Letters, Elsevier, vol. 196(C).
    26. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    27. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575.
    28. Lutz Kilian & Xiaoqing Zhou, 2020. "Does drawing down the US Strategic Petroleum Reserve help stabilize oil prices?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 673-691, September.
    29. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    30. Maurizio Michael Habib & Sascha Bützer & Livio Stracca, 2016. "Global Exchange Rate Configurations: Do Oil Shocks Matter?," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(3), pages 443-470, August.
    31. Baumeister, Christiane & Hamilton, James, 2018. "Inference in Structural Vector Autoregressions When the Identifying Assumptions are Not Fully Believed: Re-evaluating the Role," CEPR Discussion Papers 12911, C.E.P.R. Discussion Papers.
    32. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    33. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    34. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    35. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    36. Waggoner, Daniel F. & Zha, Tao, 2012. "Confronting model misspecification in macroeconomics," Journal of Econometrics, Elsevier, vol. 171(2), pages 167-184.
    37. Richard G. Newell and Brian C. Prest, 2019. "The Unconventional Oil Supply Boom: Aggregate Price Response from Microdata," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    38. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    39. repec:oup:ecpoli:v:29:y:2014:i:80:p:691-747 is not listed on IDEAS
    40. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781316510520.
    41. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    42. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    43. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    44. Koop, Gary, 1996. "Parameter uncertainty and impulse response analysis," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 135-149.
    45. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    46. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    47. Funashima, Yoshito, 2020. "Global economic activity indexes revisited," Economics Letters, Elsevier, vol. 193(C).
    48. James D. Hamilton, 2021. "Measuring global economic activity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 293-303, April.
    49. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    50. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    51. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108414982.
    52. repec:zbw:bofrdp:2018_014 is not listed on IDEAS
    53. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    54. James D. Hamilton, 2019. "Measuring Global Economic Activity," NBER Working Papers 25778, National Bureau of Economic Research, Inc.
    55. Francesco Lippi & Andrea Nobili, 2012. "Oil And The Macroeconomy: A Quantitative Structural Analysis," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1059-1083, October.
    56. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    57. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    58. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    59. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
    60. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    61. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108400022.
    62. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2018. "Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications," Econometrica, Econometric Society, vol. 86(2), pages 685-720, March.
    63. Regli, Frederik & Nomikos, Nikos K., 2019. "The eye in the sky – Freight rate effects of tanker supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 402-424.
    64. Juan Antolin-Diaz & Juan F. Rubio-Ramirez, 2016. "Narrative Sign Restrictions for SVARs," FRB Atlanta Working Paper 2016-16, Federal Reserve Bank of Atlanta.
    65. Martin Bruns & Michele Piffer, 2018. "Bayesian Structural VAR models: a new approach for prior beliefs on impulse responses," Working Papers 878, Queen Mary University of London, School of Economics and Finance.
    66. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kilian, Lutz, 2022. "Understanding the estimation of oil demand and oil supply elasticities," Energy Economics, Elsevier, vol. 107(C).
    2. Carrillo-Maldonado, Paul & Díaz-Cassou, Javier, 2023. "An anatomy of external shocks in the Andean region," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    3. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    4. Nonejad, Nima, 2020. "An observation regarding Hamilton’s recent criticisms of Kilian’s global real economic activity index," Economics Letters, Elsevier, vol. 196(C).
    5. Iania, Leonardo & Lyrio, Marco & Nersisyan, Liana, 2023. "Oil Price Shocks and Bond Risk Premia: Evidence from a Panel of 15 Countries," LIDAM Discussion Papers LFIN 2023002, Université catholique de Louvain, Louvain Finance (LFIN).
    6. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
    7. Palmén, Olli, 2020. "Sovereign default risk and credit supply: Evidence from the euro area," Journal of International Money and Finance, Elsevier, vol. 109(C).
    8. Zeina Alsalman, 2023. "Oil price shocks and US unemployment: evidence from disentangling the duration of unemployment spells in the labor market," Empirical Economics, Springer, vol. 65(1), pages 479-511, July.
    9. Even Comfort Hvinden, 2019. "OPEC's crude game," Working Papers No 10/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    10. Chen, Jianyu & Zhang, Jianshun, 2023. "Crude oil price shocks, volatility spillovers, and global systemic financial risk transmission mechanisms: Evidence from the stock and foreign exchange markets," Resources Policy, Elsevier, vol. 85(PB).
    11. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    12. Paul Carrillo‐Maldonado, 2023. "Partial identification for growth regimes: The case of Latin American countries," Metroeconomica, Wiley Blackwell, vol. 74(3), pages 557-583, July.
    13. Zeina Alsalman, 2021. "Does the source of oil supply shock matter in explaining the behavior of U.S. consumer spending and sentiment?," Empirical Economics, Springer, vol. 61(3), pages 1491-1518, September.
    14. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    15. Hilde C. Bj�rnland, 2019. "Supply flexibility in the shale patch: Facts, no fiction," Working Papers No 08/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    2. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    3. Kilian, Lutz, 2022. "Understanding the estimation of oil demand and oil supply elasticities," Energy Economics, Elsevier, vol. 107(C).
    4. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
    5. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    6. Lutz Kilian & Xiaoqing Zhou, 2020. "Does drawing down the US Strategic Petroleum Reserve help stabilize oil prices?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 673-691, September.
    7. Kilian, Lutz & Zhou, Xiaoqing, 2022. "Oil prices, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 126(C).
    8. Zeina Alsalman, 2023. "Oil price shocks and US unemployment: evidence from disentangling the duration of unemployment spells in the labor market," Empirical Economics, Springer, vol. 65(1), pages 479-511, July.
    9. Jamie L. Cross & Bao H. Nguyen & Trung Duc Tran, 2022. "The role of precautionary and speculative demand in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 882-895, August.
    10. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    11. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Structural Interpretation of Vector Autoregressions with Incomplete Information: Revisiting the Role of Oil Supply and Demand S," CEPR Discussion Papers 13068, C.E.P.R. Discussion Papers.
    12. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    13. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    14. Lutz Kilian & Xiaoqing Zhou, 2018. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks: Comment," CESifo Working Paper Series 7166, CESifo.
    15. Lomonosov, Daniil & Polbin, Andrey & Fokin, Nikita, 2020. "Влияние Шоков Мировой Деловой Активности, Предложения Нефти И Спекулятивных Нефтяных Шоков На Экономику Рф [The impact of global economic activity, oil supply and speculative oil shocks on the Russ," MPRA Paper 106019, University Library of Munich, Germany.
    16. Baumeister, Christiane & Hamilton, James D., 2020. "Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions," Journal of International Money and Finance, Elsevier, vol. 109(C).
    17. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    18. Lutz Kilian, 2023. "How to Construct Monthly VAR Proxies Based on Daily Futures Market Surprises," Working Papers 2310, Federal Reserve Bank of Dallas.
    19. Christiane Baumeister & James D. Hamilton, 2020. "Advances in Using Vector Autoregressions to Estimate Structural Magnitudes," NBER Working Papers 27014, National Bureau of Economic Research, Inc.
    20. Daniil Lomonosov & Andrey Polbin & Nikita Fokin, 2021. "The Impact of Global Economic Activity, Oil Supply and Speculative Oil Shocks on the Russian Economy," HSE Economic Journal, National Research University Higher School of Economics, vol. 25(2), pages 227-262.

    More about this item

    Keywords

    oil supply elasticity; oil demand elasticity; IV estimation; structural VAR; Bayesian inference; oil price; global real activity;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_7902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.