IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2016-16.html
   My bibliography  Save this paper

Narrative Sign Restrictions for SVARs

Author

Listed:

Abstract

We identify structural vector autoregressions using narrative sign restrictions. Narrative sign restrictions constrain the structural shocks and/or the historical decomposition around key historical events, ensuring that they agree with the established narrative account of these episodes. Using models of the oil market and monetary policy, we show that narrative sign restrictions tend to be highly informative. Even a single narrative sign restriction may dramatically sharpen and even change the inference of SVARs originally identified via traditional sign restrictions. Our approach combines the appeal of narrative methods with the popularized usage of traditional sign restrictions.

Suggested Citation

  • Antolin-Diaz, Juan & Rubio-Ramirez, Juan F., 2016. "Narrative Sign Restrictions for SVARs," FRB Atlanta Working Paper 2016-16, Federal Reserve Bank of Atlanta, revised 01 Oct 2017.
  • Handle: RePEc:fip:fedawp:2016-16
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/documents/research/publications/wp/2016/16a-narrative-sign-restrictions-for-svars-2017-10-12.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Leeper, Eric M., 1997. "Narrative and VAR approaches to monetary policy: Common identification problems," Journal of Monetary Economics, Elsevier, vol. 40(3), pages 641-657, December.
    3. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    4. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    5. Thorsten Drautzburg, 2014. "A Narrative Approach to a Fiscal DSGE Model," 2014 Meeting Papers 791, Society for Economic Dynamics.
    6. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    7. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    8. Refet S Gürkaynak & Brian Sack & Eric Swanson, 2005. "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    9. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2017. "Shock Restricted Structural Vector-Autoregressions," NBER Working Papers 23225, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    narrative information; SVARs; Bayesian approach; sign restrictions; oil market; monetary policy;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2016-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elaine Clokey). General contact details of provider: http://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.