IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Do financial variables help forecasting inflation and real activity in the euro area?"

by Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and forecasting business cycles in a small open economy: A dynamic factor model for Singapore," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2009(1), pages 19-41.
  2. Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
  3. Panopoulou, Ekaterini, 2007. "Predictive financial models of the euro area: A new evaluation test," International Journal of Forecasting, Elsevier, vol. 23(4), pages 695-705.
  4. Marco Lombardi & Raphael A Espinoza & Fabio Fornari, 2009. "The Role of Financial Variables in Predicting Economic Activity in the Euro Area," IMF Working Papers 09/241, International Monetary Fund.
  5. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
  6. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
  7. Furkan Emirmahmutoglu & Mehmet Balcilar & Nicholas Apergis & Beatrice D. Simo-Kengne & Tsangyao Chang & Rangan Gupta, 2014. "Causal relationship between asset prices and output in the US: Evidence from state-level panel Granger causality test," Working Papers 201411, University of Pretoria, Department of Economics.
  8. Baetje, Fabian & Menkhoff, Lukas, 2013. "Macro determinants of U.S. stock market risk premia in bull and bear markets," Hannover Economic Papers (HEP) dp-520, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  9. Vasilios Plakandaras & Rangan Gupta & Periklis Gogas & Theophilos Papadimitriou, 2014. "Forecasting the U.S. Real House Price Index," Working Paper Series 30_14, The Rimini Centre for Economic Analysis.
  10. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
  11. Carstensen, Kai & Wohlrabe, Klaus & Ziegler, Christina, 2010. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Discussion Papers in Economics 11442, University of Munich, Department of Economics.
  12. Gupta, Rangan & Modise, Mampho P., 2013. "Macroeconomic Variables and South African Stock Return Predictability," Economic Modelling, Elsevier, vol. 30(C), pages 612-622.
  13. Dovern, Jonas & Ziegler, Christina, 2008. "Predicting growth rates and recessions: assessing US leading indicators under real-time conditions," Kiel Working Papers 1397, Kiel Institute for the World Economy (IfW).
  14. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
  15. Mattéo Luciani & Lorenzo Ricci, 2013. "Nowcasting Norway," Working Papers ECARES ECARES 2013-10, ULB -- Universite Libre de Bruxelles.
  16. Kun Guo & Wei-Xing Zhou & Si-Wei Cheng & Didier Sornette, 2011. "The US stock market leads the Federal funds rate and Treasury bond yields," Papers 1102.2138, arXiv.org.
  17. Hofmann, Boris, 2008. "Do monetary indicators lead euro area inflation?," Working Paper Series 0867, European Central Bank.
  18. Mototsugu Shintani, 2010. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Levine's Working Paper Archive 506439000000000168, David K. Levine.
  19. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
  20. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  21. repec:ipg:wpaper:2014-473 is not listed on IDEAS
  22. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
  23. Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2006. "Time series forecasting by principal covariate regression," Econometric Institute Research Papers EI 2006-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  24. Amstad, Marlene & Fischer, Andreas M., 2009. "Monthly pass-through ratios," Globalization and Monetary Policy Institute Working Paper 26, Federal Reserve Bank of Dallas.
  25. Andreas Fischer & Marlene Amstad, 2004. "Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environment," Working Papers 04.06, Swiss National Bank, Study Center Gerzensee.
  26. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
  27. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  28. repec:bof:bofitp:urn:nbn:fi:bof-201504131155 is not listed on IDEAS
  29. Inoue, Atsushi & Kilian, Lutz, 2004. "Bagging Time Series Models," CEPR Discussion Papers 4333, C.E.P.R. Discussion Papers.
  30. Gerdesmeier, Dieter & Reimers, Hans-Eggert & Roffia, Barbara, 2015. "Consumer and asset prices: Some recent evidence," Wismar Discussion Papers 01/2015, Hochschule Wismar, Wismar Business School.
  31. Gianluca Lagana, 2004. "Measuring monetary policy in the UK: a factor augmented vector autoregressive approach," Money Macro and Finance (MMF) Research Group Conference 2004 64, Money Macro and Finance Research Group.
  32. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
  33. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
  34. Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
  35. Luciani, Matteo & Pundit, Madhavi & Ramayandi, Arief & Veronese , Giovanni, 2015. "Nowcasting Indonesia," ADB Economics Working Paper Series 471, Asian Development Bank.
  36. Matteo Luciani, 2013. "Monetary Policy, and the Housing Market: A Structural Factor Analysis," ULB Institutional Repository 2013/153324, ULB -- Universite Libre de Bruxelles.
  37. Harald Grech, 2004. "What Do German Short-Term Interest Rates Tell Us About Future Inflation?," Working Papers 94, Oesterreichische Nationalbank (Austrian Central Bank).
  38. Heij, C., 2007. "Improved forecasting with leading indicators: the principal covariate index," Econometric Institute Research Papers EI 2007-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  39. Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," IMFS Working Paper Series 59, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
  40. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
  41. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
  42. In Choi, 2007. "Efficient Estimation of Factor Models," Working Papers 0701, Research Institute for Market Economy, Sogang University, revised Dec 2010.
  43. Aslanidis, Nektarios & Cipollini, Andrea, 2010. "Leading indicator properties of US high-yield credit spreads," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 145-156, March.
  44. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, Elsevier.
  45. Nicoletti, Giulio & Passaro, Raffaele, 2012. "Sometimes it helps: the evolving predictive power of spreads on GDP dynamics," Working Paper Series 1447, European Central Bank.
  46. Sonali Das & Rangan Gupta & Alain Kabundi, 2008. "Could We Have Predicted The Recent Downturn In The South African Housing Market?," Working Papers 200831, University of Pretoria, Department of Economics.
  47. Blaes, Barno, 2009. "Money and monetary policy transmission in the euro area: evidence from FAVAR- and VAR approaches," Discussion Paper Series 1: Economic Studies 2009,18, Deutsche Bundesbank, Research Centre.
  48. Berger, Helge & Stavrev, Emil, 2008. "The information content of money in forecasting Euro area inflation," Discussion Papers 2008/15, Free University Berlin, School of Business & Economics.
  49. Koop, Gary & Korobilis, Dimitris, 2013. "A New Index of Financial Conditions," MPRA Paper 45463, University Library of Munich, Germany.
  50. Nikolay Robinzonov & Klaus Wohlrabe, 2008. "Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models," Ifo Working Paper Series Ifo Working Paper No. 57, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  51. Poghosyan, K. & Magnus, J.R., 2011. "WALS estimation and forecasting in factor-based dynamic models with an application to Armenia," Discussion Paper 2011-054, Tilburg University, Center for Economic Research.
  52. Ekaterini Panopoulou, 2006. "The predictive content of financial variables: Evidence from the euro area," The Institute for International Integration Studies Discussion Paper Series iiisdp178, IIIS.
  53. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  54. Tomáš Havránek & Roman Horváth & Jakub Matějů, 2012. "Monetary transmission and the financial sector in the Czech Republic," Economic Change and Restructuring, Springer, vol. 45(3), pages 135-155, August.
  55. Andrea Nobili, 2005. "Forecasting Output Growth And Inflation In The Euro Area: Are Financial Spreads Useful?," Temi di discussione (Economic working papers) 544, Bank of Italy, Economic Research and International Relations Area.
  56. Berger, Helge & Harjes, Thomas & Stavrev, Emil, 2008. "The ECB's monetary analysis revisited," Discussion Papers 2008/14, Free University Berlin, School of Business & Economics.
  57. repec:ipg:wpaper:2014-585 is not listed on IDEAS
  58. Raúl Ibarra-Ramírez, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
  59. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  60. Rapacciuolo, Ciro, 2003. "Un semplice modello univariato per la previsione a breve termine dell'inflazione italiana
    [A simple model for the short term forecasting of Italian inflation]
    ," MPRA Paper 7714, University Library of Munich, Germany.
  61. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
  62. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank, Research Centre.
  63. Ercio Muñoz & Pablo Cruz, 2012. "Uso de un Modelo Favar para Proyectar el Precio del Cobre," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 15(3), pages 84-95, December.
  64. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  65. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
  66. Matteo Manera & Massimiliano Serati & Michele Plotegher, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," Working Papers 2008.9, Fondazione Eni Enrico Mattei.
  67. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
  68. Marlene Amstad & Andreas M. Fischer, 2009. "Do macroeconomic announcements move inflation forecasts?," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 507-518.
  69. Gupta, Rangan & Modise, Mampho P., 2013. "Does the source of oil price shocks matter for South African stock returns? A structural VAR approach," Energy Economics, Elsevier, vol. 40(C), pages 825-831.
  70. Marlene Amstad & Andreas M. Fischer, 2005. "Shock identification of macroeconomic forecasts based on daily panels," Staff Reports 206, Federal Reserve Bank of New York.
  71. L. Ferrara & C. Marsilli, 2014. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Working papers 515, Banque de France.
  72. In Choi & Dukpa Kim & Yun Jung Kim & Noh-Sun Kwark, 2016. "A Multilevel Factor Model: Identification, Asymptotic Theory and Applications," Working Papers 1609, Research Institute for Market Economy, Sogang University.
  73. Xisong Jin & Francisco Nadal De Simone, 2013. "Banking Systemic Vulnerabilities: A Tail-risk Dynamic CIMDO Approach," BCL working papers 82, Central Bank of Luxembourg.
  74. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
  75. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Economics Working Papers ECO2008/22, European University Institute.
  76. Mésonnier, J-S., 2006. "The Reliability of Macroeconomic Forecasts based on Real Interest Rate Gap Estimates in Real Time: an Assessment for the Euro Area," Working papers 157, Banque de France.
  77. John W. Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
  78. Nathan Bedock & Dalibor Stevanovic, 2012. "An Empirical Study of Credit Shock Transmission in a Small Open Economy," CIRANO Working Papers 2012s-16, CIRANO.
  79. Inoue, Atsushi & Kilian, Lutz, 2003. "On the selection of forecasting models," Working Paper Series 0214, European Central Bank.
  80. Chevallier, Julien, 2011. "Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model," Economic Modelling, Elsevier, vol. 28(1), pages 557-567.
  81. Joshua C.C. Chan, 2015. "Large Bayesian VARs: A flexible Kronecker error covariance structure," CAMA Working Papers 2015-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  82. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank, Research Centre.
  83. Jean-Stéphane MESONNIER, 2007. "The predictive content of the real interest rate gap for macroeconomic variables in the euro area," Money Macro and Finance (MMF) Research Group Conference 2006 102, Money Macro and Finance Research Group.
  84. Qian, Hang, 2012. "A Flexible State Space Model and its Applications," MPRA Paper 38455, University Library of Munich, Germany.
  85. Laganà, Gianluca & Sgro, Pasquale Michael, 2011. "A factor-augmented VAR approach: The effect of a rise in the US personal income tax rate on the US and Canada," Economic Modelling, Elsevier, vol. 28(3), pages 1163-1169, May.
  86. Emil Stavrev, 2006. "Measures of Underlying Inflation in the Euro Area; Assessment and Role for Informing Monetary Policy," IMF Working Papers 06/197, International Monetary Fund.
  87. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
  88. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
  89. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
  90. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
  91. Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo Group Munich.
  92. Linlin Niu & Xiu Xu & Ying Chen, 2015. "An Adaptive Approach to Forecasting Three Key Macroeconomic Variables for Transitional China," SFB 649 Discussion Papers SFB649DP2015-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  93. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2014. "Tracking the Slowdown in Long-Run GDP Growth," Discussion Papers 1604, Centre for Macroeconomics (CFM), revised Jan 2016.
  94. Christina Ziegler, 2009. "Testing Predicitive Ability of Business Cycle Indicators for the Euro Area," Ifo Working Paper Series Ifo Working Paper No. 69, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  95. Inoue, Atsushi & Kilian, Lutz, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
  96. Tomas Adam & Miroslav Plasil, 2014. "The Impact of Financial Variables on Czech Macroeconomic Developments: An Empirical Investigation," Working Papers 2014/11, Czech National Bank, Research Department.
  97. Michele Modugno & Lucrezia Reichlin & Domenico Giannone & Marta Banbura, 2012. "Nowcasting with Daily Data," 2012 Meeting Papers 555, Society for Economic Dynamics.
  98. Jennifer Castle & David Hendry, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
  99. Knut Are Aastveit & Tørres G. Trovik, 2008. "Nowcasting Norwegian GDP: The role of asset prices in a small open economy," Working Paper 2007/09, Norges Bank.
  100. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 201226, University of Pretoria, Department of Economics.
  101. Bruneau, C. & De Bandt, O. & Flageollet, A., 2003. "Forecasting Inflation in the Euro Area," Working papers 102, Banque de France.
  102. Xisong Jin & Francisco Nadal De Simone, 2016. "Tracking Changes in the Intensity of Financial Sector's Systemic Risk," BCL working papers 102, Central Bank of Luxembourg.
  103. Xisong Jin & Francisco Nadal De Simone, 2012. "An Early-warning and Dynamic Forecasting Framework of Default Probabilities for the Macroprudential Policy Indicators Arsenal," BCL working papers 75, Central Bank of Luxembourg.
  104. Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
  105. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
  106. Christophe Van Nieuwenhuyze, 2006. "A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts," Working Paper Research 80, National Bank of Belgium.
  107. Rangan Gupta & Alain Kabundi, 2009. "A Large Factor Model for Forecasting Macroeconomic Variables in South Africa," Working Papers 137, Economic Research Southern Africa.
  108. Massimiliano Serati & Gianni Amisano, 2008. "Building composite leading indexes in a dynamic factor model framework: a new proposal," LIUC Papers in Economics 212, Cattaneo University (LIUC).
  109. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
  110. Tao Zeng & Yong Li & Jun Yu, 2014. "Deviance Information Criterion for Comparing VAR Models," Working Papers 01-2014, Singapore Management University, School of Economics.
  111. Matteo Luciani & Libero Monteforte, 2012. "Uncertainty and Heterogeneity in factor models forecasting," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
  112. In Choi & Seong Jin Hwang, 2012. "Forecasting Korean inflation," Working Papers 1202, Research Institute for Market Economy, Sogang University.
  113. In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Research Institute for Market Economy, Sogang University, revised Jun 2011.
  114. Balcilar, Mehmet & Gupta, Rangan & Shah, Zahra B., 2011. "An in-sample and out-of-sample empirical investigation of the nonlinearity in house prices of South Africa," Economic Modelling, Elsevier, vol. 28(3), pages 891-899, May.
  115. Hansson, Jesper & Jansson, Per & Löf, Mårten, 2003. "Business Survey Data: Do They Help in Forecasting the Macro Economy?," Working Paper Series 151, Sveriges Riksbank (Central Bank of Sweden).
  116. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
  117. Ruiz, Esther & Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
  118. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  119. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
  120. Erdemlioglu, Deniz, 2009. "Macro Factors in UK Excess Bond Returns: Principal Components and Factor-Model Approach," MPRA Paper 28895, University Library of Munich, Germany.
  121. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
  122. Luis A. Gil-Alana & Rangan Gupta & Ferando Perez de Gracia, 2014. "Persistence, Mean Reversion and Non-Linearities in US Housing Prices Over 1830-2013," Working Papers 201450, University of Pretoria, Department of Economics.
  123. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
  124. Nektarios Aslanidis & Andrea Cipollini, 2007. "Leading indicator properties of the US corporate spreads," Money Macro and Finance (MMF) Research Group Conference 2006 115, Money Macro and Finance Research Group.
  125. Junttila, Juha, 2007. "Forecasting the macroeconomy with contemporaneous financial market information: Europe and the United States," Review of Financial Economics, Elsevier, vol. 16(2), pages 149-175.
  126. Barhoumi, K. & Brunhes-Lesage, V. & Ferrara, L. & Pluyaud, B. & Rouvreau, B. & Darné, O., 2008. "OPTIM: a quarterly forecasting tool for French GDP," Quarterly selection of articles - Bulletin de la Banque de France, Banque de France, issue 13, pages 31-47, Autumn.
  127. Shibamoto, Masahiko, 2008. "The estimation of monetary policy reaction function in a data-rich environment: The case of Japan," Japan and the World Economy, Elsevier, vol. 20(4), pages 497-520, December.
  128. Tomas Havranek & Roman Horvath & Jakub Mateju, 2010. "Do Financial Variables Help Predict Macroeconomic Environment? The Case of the Czech Republic," Working Papers 2010/06, Czech National Bank, Research Department.
  129. repec:ipg:wpaper:2014-466 is not listed on IDEAS
  130. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  131. In Choi, 2013. "Model Selection for Factor Analysis: Some New Criteria and Performance Comparisons," Working Papers 1209, Research Institute for Market Economy, Sogang University.
  132. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.