IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320140000033017.html
   My bibliography  Save this book chapter

Deviance Information Criterion for Comparing VAR Models

In: Essays in Honor of Peter C. B. Phillips

Author

Listed:
  • Tao Zeng
  • Yong Li
  • Jun Yu

Abstract

Vector Autoregression (VAR) has been a standard empirical tool used in macroeconomics and finance. In this paper we discuss how to compare alternative VAR models after they are estimated by Bayesian MCMC methods. In particular we apply a robust version of deviance information criterion (RDIC) recently developed inLi, Zeng, and Yu (2014b)to determine the best candidate model. RDIC is a better information criterion than the widely used deviance information criterion (DIC) when latent variables are involved in candidate models. Empirical analysis using US data shows that the optimal model selected by RDIC can be different from that by DIC.

Suggested Citation

  • Tao Zeng & Yong Li & Jun Yu, 2014. "Deviance Information Criterion for Comparing VAR Models," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 615-637, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320140000033017
    DOI: 10.1108/S0731-905320140000033017
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000033017/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000033017/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000033017/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320140000033017
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320140000033017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    2. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    3. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
    4. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    5. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    6. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    8. Phillips, Peter C. B., 1995. "Bayesian model selection and prediction with empirical applications," Journal of Econometrics, Elsevier, vol. 69(1), pages 289-331, September.
    9. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    10. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
    11. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    12. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    13. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    14. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drake, Brett & Sohn, Yejin & Morrison, Maria & Jonson-Reid, Melissa, 2021. "In what kinds of communities do people on the sex offender registry live? An analysis of ten states," Children and Youth Services Review, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    2. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    4. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    5. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
    6. Del Negro, Marco & Otrok, Christopher, 2007. "99 Luftballons: Monetary policy and the house price boom across U.S. states," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1962-1985, October.
    7. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    8. Tibor Szendrei & Katalin Varga, 2020. "FISS - A Factor-based Index of Systemic Stress in the Financial System," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 3-34, March.
    9. Mr. Maxym Kryshko, 2011. "Data-Rich DSGE and Dynamic Factor Models," IMF Working Papers 2011/216, International Monetary Fund.
    10. repec:cte:wsrepe:23974 is not listed on IDEAS
    11. Bagliano, Fabio C. & Morana, Claudio, 2009. "International macroeconomic dynamics: A factor vector autoregressive approach," Economic Modelling, Elsevier, vol. 26(2), pages 432-444, March.
    12. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic Factor Models," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40, Springer.
    13. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    14. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    15. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    16. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    17. Heij, C., 2007. "Improved forecasting with leading indicators: the principal covariate index," Econometric Institute Research Papers EI 2007-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    19. IIBOSHI Hirokuni, 2012. "Measuring the Effects of Monetary Policy: A DSGE-DFM Approach," ESRI Discussion paper series 292, Economic and Social Research Institute (ESRI).
    20. Marco Del Negro & Christopher Otrok, 2005. "Monetary policy and the house price boom across U.S. states," FRB Atlanta Working Paper 2005-24, Federal Reserve Bank of Atlanta.
    21. Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
    22. Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and forecasting business cycles in a small open economy: A dynamic factor model for Singapore," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2009(1), pages 19-41.

    More about this item

    Keywords

    Bayes factor; DIC; VAR models; Markov Chain Monte Carlo; C11; C12; G12;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320140000033017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.