IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Bayesian Model Selection and Prediction with Empirical Applications

This paper builds on some recent work by the author and Werner Ploberger (1991, 1994) on the development of "Bayes models" for time series and on the authors' model selection criterion "PIC." The PIC criterion is used in this paper to determine the lag order, the trend degree, and the presence or absence of a unit root in an autoregression with deterministic trend. A new forecast encompassing test for Bayes models is developed which allows one Bayes model to be compared with another on the basis of their respective forecasting performance. The paper reports an extended empirical application of the methodology to the Nelson-Plosser (1982)/Schotman-van Dijk (1991) data. It is shown that parsimonious, evolving-format Bayes models forecast-encompass fixed Bayes models of the "AR(3) + linear trend" variety for most of these series. In some cases, the forecast performance of the parsimonious Bayes models is substantially superior. The results cast some doubts on the value of working with fixed format time series models in empirical research and demonstrate the practical advantages of evolving-format models. The paper makes a new suggestion for modelling interest rates in terms of reciprocals of levels rather than levels (which display more volatility) and shows that the best data-determined model for this transformed series is a martingale. Keywords: Bayes model, Bayes measure, BIC, forecast, forecast-encompass, model selection, PIC, unit root

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1023.

in new window

Length: 31 pages
Date of creation: Jul 1992
Date of revision:
Publication status: Published in Journal of Econometrics (1995), 69: 289-331
Handle: RePEc:cwl:cwldpp:1023
Note: CFP 911.
Contact details of provider: Postal:
Yale University, Box 208281, New Haven, CT 06520-8281 USA

Phone: (203) 432-3702
Fax: (203) 432-6167
Web page:

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  2. Steven N. Durlauf & Peter C.B. Phillips, 1986. "Trends Versus Random Walks in Time Series Analysis," Cowles Foundation Discussion Papers 788, Cowles Foundation for Research in Economics, Yale University.
  3. Peter C.B. Phillips & Werner Ploberger, 1991. "Time Series Modelling with a Bayesian Frame of Reference: 1. Concepts and Illustrations," Cowles Foundation Discussion Papers 980, Cowles Foundation for Research in Economics, Yale University.
  4. Phillips, Peter C.B., 1995. "Spurious Regression in Forecast-Encompassing Tests," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1188-1190, October.
  5. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
  6. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
  7. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
  8. Florens, J.P. & Mouchart, M. & Larribeau-Nori, S., 1992. "Bayesian Encompassing Tests of Unit Root Hypothesis," Papers 92.274, Toulouse - GREMAQ.
  9. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
  10. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1023. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.