IDEAS home Printed from https://ideas.repec.org/a/taf/nzecpp/v34y2000i2p159-181.html
   My bibliography  Save this article

Forecasting New Zealand's real GDP

Author

Listed:
  • Aaron Schiff
  • Peter Phillips

Abstract

Recent time series methods are applied to the problem of forecasting New Zealand's real GDP. Model selection is conducted within autoregressive (AR) and vector autoregressive (VAR) classes, allowing for evolution in the form of the models over time. The selections are performed using the Schwarz (1978) BIC and the Phillips-Ploberger (1996) PIC criteria. The forecasts generated by the data-determined AR models and an international VAR model are found to be competitive with forecasts from fixed format models and forecasts produced by the NZIER. Two illustrations of the methodology in conditional forecasting settings are performed with the VAR models. The first provides conditional predictions of New Zealand's real GDP when there is a future recession in the United States. The second gives conditional predictions of New Zealand's real GDP under a variety of profiles that allow for tightening in monetary conditions by the Reserve Bank.

Suggested Citation

  • Aaron Schiff & Peter Phillips, 2000. "Forecasting New Zealand's real GDP," New Zealand Economic Papers, Taylor & Francis Journals, vol. 34(2), pages 159-181.
  • Handle: RePEc:taf:nzecpp:v:34:y:2000:i:2:p:159-181
    DOI: 10.1080/00779950009544321
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00779950009544321
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Peter C.B. Phillips, 1992. "Bayes Models and Forecasts of Australian Macroeconomic Time Series," Cowles Foundation Discussion Papers 1024, Cowles Foundation for Research in Economics, Yale University.
    4. Phillips, Peter C. B., 1995. "Bayesian model selection and prediction with empirical applications," Journal of Econometrics, Elsevier, vol. 69(1), pages 289-331, September.
    5. Chao, John C. & Phillips, Peter C. B., 1999. "Model selection in partially nonstationary vector autoregressive processes with reduced rank structure," Journal of Econometrics, Elsevier, vol. 91(2), pages 227-271, August.
    6. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    7. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
    8. Peter C.B. Phillips, 1995. "Automated Forecasts of Asia-Pacific Economic Activity," Cowles Foundation Discussion Papers 1103, Cowles Foundation for Research in Economics, Yale University.
    9. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    10. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    11. Phillips, Peter C. B., 1995. "Bayesian prediction a response," Journal of Econometrics, Elsevier, vol. 69(1), pages 351-365, September.
    12. repec:cup:etheor:v:10:y:1994:i:3-4:p:774-808 is not listed on IDEAS
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    14. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(01), pages 212-231, February.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nzecpp:v:34:y:2000:i:2:p:159-181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/RNZP20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.