IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v25y2005i3p207-228.html
   My bibliography  Save this article

Model Selection Using Information Criteria and Genetic Algorithms

Author

Listed:
  • Kelvin Balcombe

    ()

Abstract

Automated model searches using information criteria are used for the estimation of linear single equation models. Genetic algorithms are described and used for this purpose. These algorithms are shown to be a practical method for model selection when the number of sub-models are very large. Several examples are presented including tests for bivariate Granger causality and seasonal unit roots. Automated selection of an autoregressive distributed lag model for the consumption function in the US is also undertaken. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Kelvin Balcombe, 2005. "Model Selection Using Information Criteria and Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 207-228, June.
  • Handle: RePEc:kap:compec:v:25:y:2005:i:3:p:207-228
    DOI: 10.1007/s10614-005-2209-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-2209-8
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    3. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    4. de Crombrugghe, Denis & Palm, Franz C & Urbain, Jean-Pierre, 1997. "Statistical Demand Functions for Food in the USA and the Netherlands," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 615-637, Sept.-Oct.
    5. Magnus, Jan R & Morgan, Mary S, 1997. "Design of the Experiment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 459-465, Sept.-Oct.
    6. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    7. Kelvin Balcombe & Alastair Bailey & Iain Fraser, 2005. "Measuring the impact of R&D on Productivity from a Econometric Time Series Perspective," Journal of Productivity Analysis, Springer, vol. 24(1), pages 49-72, September.
    8. Phillips, Peter C. B., 1995. "Bayesian model selection and prediction with empirical applications," Journal of Econometrics, Elsevier, vol. 69(1), pages 289-331, September.
    9. Magnus, J.R. & Morgan, M.S., 1997. "The data : A brief description," Other publications TiSEM 4bdd1a8c-adbb-4786-9fc1-b, Tilburg University, School of Economics and Management.
    10. Chao, John C. & Phillips, Peter C. B., 1999. "Model selection in partially nonstationary vector autoregressive processes with reduced rank structure," Journal of Econometrics, Elsevier, vol. 91(2), pages 227-271, August.
    11. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    12. Phillips, Peter C. B., 1995. "Bayesian prediction a response," Journal of Econometrics, Elsevier, vol. 69(1), pages 351-365, September.
    13. Werner Ploberger & Peter C.B. Phillips, 1998. "Rissanen's Theorem and Econometric Time Series," Cowles Foundation Discussion Papers 1197, Cowles Foundation for Research in Economics, Yale University.
    14. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    15. Magnus, Jan R & Morgan, Mary S, 1997. "The Data: A Brief Description," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 651-661, Sept.-Oct.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Kaucic, 2009. "Predicting EU Energy Industry Excess Returns on EU Market Index via a Constrained Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 34(2), pages 173-193, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:25:y:2005:i:3:p:207-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.