IDEAS home Printed from https://ideas.repec.org/p/auc/wpaper/186.html

Forecasting New Zealand's Real GDP

Author

Listed:
  • Schiff, Aaron
  • Phillips, Peter

Abstract

Recent time series methods are applied to the problem of forecasting New Zealand_s real GDP. Model selection is conducted within autoregressive (AR) and vector autoregressive (VAR) classes, allowing for evolution in the form of the models over time. The selections are performed using the Schwarz (1978) BIC and the Phillips-Ploberger (1996) PIC criteria. The forecasts generated by the data determined AR models and an international VAR model are found to be competitive with forecasts from fixed format models and forecasts produced by the NZIER. Two illustrations of the methodology in conditional forecasting settings are performed with the VAR models. The first provides conditional predictions of New Zealand_s real GDP when there is a future recession in the United States. The second gives conditional predictions of New Zealand_s real GDP under a variety of profiles that allow for tightening in monetary conditions by the Reserve Bank.

Suggested Citation

  • Schiff, Aaron & Phillips, Peter, 2000. "Forecasting New Zealand's Real GDP," Working Papers 186, Department of Economics, The University of Auckland.
  • Handle: RePEc:auc:wpaper:186
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2292/186
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 212-231, February.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:auc:wpaper:186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Digital Development (email available below). General contact details of provider: https://edirc.repec.org/data/deaucnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.