IDEAS home Printed from
   My bibliography  Save this paper

Bayesian Encompassing Tests of Unit Root Hypothesis


  • Florens, J.P.
  • Mouchart, M.
  • Larribeau-Nori, S.


The object of this paper is to report, for a simple testing problem of a unit root hypothesis, some experience regarding the numerical problems involved by using a Bayesian encompassing test, i.e., a Bayesian procedure that treats the null and the alternative hypotheses as different models, the null one and the alternative one, that share a same sample space but with different parameter spaces. Numerical procedures and efficient simulations are discussed briefly, and the numerical results so obtained are used to evaluate the meaning of the prior specification and of the empirical evidence about a unit root inference.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Florens, J.P. & Mouchart, M. & Larribeau-Nori, S., 1992. "Bayesian Encompassing Tests of Unit Root Hypothesis," Papers 92.274, Toulouse - GREMAQ.
  • Handle: RePEc:fth:gremaq:92.274

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cribari-Neto, Francisco, 1996. "On time series econometrics," The Quarterly Review of Economics and Finance, Elsevier, vol. 36(Supplemen), pages 37-60.
    2. Christophe Bontemps & Grayham E. Mizon, 2008. "Encompassing: Concepts and Implementation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 721-750, December.
    3. Phillips, Peter C. B., 1995. "Bayesian model selection and prediction with empirical applications," Journal of Econometrics, Elsevier, vol. 69(1), pages 289-331, September.

    More about this item


    economic models ; econometrics;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:gremaq:92.274. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.