IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/30-2012.html
   My bibliography  Save this paper

Robust Deviance Information Criterion for Latent Variable Models

Author

Listed:
  • Yong Li

    (Hanqing Advanced Institute of Economics and Finance, Renmin University of China)

  • Tao Zeng

    (School of Economics and Sim Kee Boon Institute for Financial Economics, Singapore Management University)

  • Jun Yu

    () (Sim Kee Boon Institute for Financial Economics, School of Economics and Lee Kong Chian School of Business)

Abstract

It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular and hence invalidates the standard asymptotic arguments. A new information criterion, robust DIC (RDIC), is proposed for Bayesian comparison of latent variable models. RDIC is shown to be a good approximation to DIC without data augmentation. While the later quantity is difficult to compute, the expectation - maximization (EM) algorithm facilitates the computation of RDIC when the MCMC output is available. Moreover, RDIC is robust to nonlinear transformations of latent variables and distributional representations of model specification. The proposed approach is illustrated using several popular models in economics and finance.

Suggested Citation

  • Yong Li & Tao Zeng & Jun Yu, 2012. "Robust Deviance Information Criterion for Latent Variable Models," Working Papers 30-2012, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:30-2012
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/20849/30_2012_Robust_Deviance_Information_Criterion_for_Latent_Variable_Models.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters,in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
    2. Zhou, Guofu, 1993. " Asset-Pricing Tests under Alternative Distributions," Journal of Finance, American Finance Association, vol. 48(5), pages 1927-1942, December.
    3. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    4. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(04), pages 959-986, August.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392.
    6. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    7. Kim, Jae-Young, 1994. "Bayesian Asymptotic Theory in a Time Series Model with a Possible Nonstationary Process," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 764-773, August.
    8. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    9. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    10. Christopher Otrok & Charles H. Whiteman, 1996. "Baynesian Leading Indicators: Measuring and Predicting Economic Conditions," Macroeconomics 9610002, EconWPA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    2. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    3. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    4. Chan, Joshua C.C. & Grant, Angelia L., 2015. "Pitfalls of estimating the marginal likelihood using the modified harmonic mean," Economics Letters, Elsevier, vol. 131(C), pages 29-33.
    5. Wiper, Michael Peter & Lopes Moreira Da Veiga, María Helena & Galán Camacho, Jorge Eduardo, 2013. "Bayesian analysis of dynamic effects in inefficiency : evidence from the Colombian banking sector," DES - Working Papers. Statistics and Econometrics. WS ws131918, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
    7. Sarmiento, Miguel & Galán, Jorge E., 2014. "Heterogeneous effects of risk-taking on bank efficiency : a stochastic frontier model with random coefficients," DES - Working Papers. Statistics and Econometrics. WS ws142013, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    9. Galán, Jorge & Ramos, Sofía B. & Veiga, Helena, 2015. "An analysis of the dynamics of efficiency of mutual funds," DES - Working Papers. Statistics and Econometrics. WS ws1517, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Cambridge Working Papers in Economics 1423, Faculty of Economics, University of Cambridge.
    11. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.

    More about this item

    Keywords

    AIC; DIC; EM Algorithm; Latent variable models; Markov Chain Monte Carlo.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:30-2012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (QL THor). General contact details of provider: http://edirc.repec.org/data/sesmusg.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.