IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws131918.html
   My bibliography  Save this paper

Bayesian analysis of dynamic effects in inefficiency : evidence from the Colombian banking sector

Author

Listed:
  • Wiper, Michael Peter
  • Lopes Moreira Da Veiga, María Helena
  • Galán Camacho, Jorge Eduardo

Abstract

Firms face a continuous process of technological and environmental changes that implies making managerial decisions in a dynamic context. However, costs and other constraints prevent firms from making instant adjustments towards optimal conditions and may cause inefficiency to be persistent in time. In this work, we propose a flexible dynamic model that makes possible to distinguish persistent effects in the inefficiency from firm inefficiency heterogeneity and to capture differences in the adjustment costs between firms. The new model is fitted to a ten year sample of Colombian banks. Our findings suggest that firm characteristics associated to size and foreign ownership have negative effects on inefficiency and separating these heterogeneity factors from the dynamics of inefficiency improves model fit. On the other hand, acquisitions are found to have positive and persistent effects on inefficiency. Colombian banks are found to present high inefficiency persistence but there exist important differences between institutions. In particular, merged banks present low costs of adjustment that allow them to recover rapidly the efficiency losses derived from merging processes

Suggested Citation

  • Wiper, Michael Peter & Lopes Moreira Da Veiga, María Helena & Galán Camacho, Jorge Eduardo, 2013. "Bayesian analysis of dynamic effects in inefficiency : evidence from the Colombian banking sector," DES - Working Papers. Statistics and Econometrics. WS ws131918, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws131918
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/17275/ws131918.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, pages 273-303.
    2. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    3. Jalal D. Akhavein & Allen N. Berger & David B. Humphrey, 1996. "The Effects of Megamergers on Efficiency and Prices: Evidence from a Bank Profit Function," Center for Financial Institutions Working Papers 96-03, Wharton School Center for Financial Institutions, University of Pennsylvania.
    4. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676.
    5. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, pages 163-176.
    6. Yong Li & Tao Zeng & Jun Yu, 2012. "Robust Deviance Information Criterion for Latent Variable Models," Working Papers 30-2012, Singapore Management University, School of Economics.
    7. Seung Ahn & Robin Sickles, 2000. "Estimation of long-run inefficiency levels: a dynamic frontier approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 461-492.
    8. George Assaf, A. & Matousek, Roman & Tsionas, Efthymios G., 2013. "Turkish bank efficiency: Bayesian estimation with undesirable outputs," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 506-517.
    9. Grigorios Emvalomatis & Spiro E. Stefanou & Alfons Oude Lansink, 2010. "A Reduced-Form Model for Dynamic Efficiency Measurement: Application to Dairy Farms in Germany and The Netherlands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(1), pages 161-174.
    10. Grigorios Emvalomatis, 2012. "Adjustment and unobserved heterogeneity in dynamic stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 37(1), pages 7-16, February.
    11. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Cambridge Working Papers in Economics 1423, Faculty of Economics, University of Cambridge.

    More about this item

    Keywords

    Stochastic frontier models;

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws131918. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.