IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/03-2014.html

A Bayesian Chi-Squared Test for Hypothesis Testing

Author

Listed:
  • Yong Li

    (Renmin University of China)

  • Xiao-Bin Liu

    (Singapore Management University)

  • Jun Yu

    (Singapore Management University, School of Economics)

Abstract

A new Bayesian test statistic is proposed to test a point null hypothesis based on a quadratic loss. The proposed test statistic may be regarded as the Bayesian version of Lagrange multiplier test. Its asymptotic distribution is obtained based on a set of regular conditions and follows a chi-squared distribution when the null hypothesis is correct. The new statistic has several important advantages that make it appeal in practical applications. First, it is well-defined under improper prior distributions. Second, it avoids Jeffrey-Lindley’s paradox. Third, it is relatively easy to compute, even for models with latent variables. Finally, it is pivotal and its threshold value can be easily obtained from the asymptotic chi-squared distribution. The method is illustrated using some real examples in economics and finance.

Suggested Citation

  • Yong Li & Xiao-Bin Liu & Jun Yu, 2014. "A Bayesian Chi-Squared Test for Hypothesis Testing," Working Papers 03-2014, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:03-2014
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/24224/03-2014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    3. Zhang, Yonghui & Chen, Zhongtian & Li, Yong, 2017. "Bayesian testing for short term interest rate models," Finance Research Letters, Elsevier, vol. 20(C), pages 146-152.
    4. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    5. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
    6. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
    7. Chen, Shyh-Wei & Hsu, Chi-Sheng & Xie, Zixong, 2016. "Are there periodically collapsing bubbles in the stock markets? New international evidence," Economic Modelling, Elsevier, vol. 52(PB), pages 442-451.
    8. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    9. Yong Li & Xiaobin Liu & Jun Yu & Tao Zeng, 2018. "A New Wald Test for Hypothesis Testing Based on MCMC outputs," Papers 1801.00973, arXiv.org.
    10. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
    11. Jin-Yu Zhang & Zhong-Tian Chen & Yong Li, 2019. "Bayesian Testing for Leverage Effect in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1153-1164, March.
    12. Wu, Zhou & Yu, Muyao & Zeng, Tao & Zhang, Yonghui, 2025. "Efficient approximation of post-processing posterior predictive p value with economic applications," Economic Modelling, Elsevier, vol. 146(C).
    13. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    14. Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:03-2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.