IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.01015.html
   My bibliography  Save this paper

Factor Investing: A Bayesian Hierarchical Approach

Author

Listed:
  • Guanhao Feng
  • Jingyu He

Abstract

This paper investigates asset allocation problems when returns are predictable. We introduce a market-timing Bayesian hierarchical (BH) approach that adopts heterogeneous time-varying coefficients driven by lagged fundamental characteristics. Our approach includes a joint estimation of conditional expected returns and covariance matrix and considers estimation risk for portfolio analysis. The hierarchical prior allows modeling different assets separately while sharing information across assets. We demonstrate the performance of the U.S. equity market. Though the Bayesian forecast is slightly biased, our BH approach outperforms most alternative methods in point and interval prediction. Our BH approach in sector investment for the recent twenty years delivers a 0.92\% average monthly returns and a 0.32\% significant Jensen`s alpha. We also find technology, energy, and manufacturing are important sectors in the past decade, and size, investment, and short-term reversal factors are heavily weighted. Finally, the stochastic discount factor constructed by our BH approach explains most anomalies.

Suggested Citation

  • Guanhao Feng & Jingyu He, 2019. "Factor Investing: A Bayesian Hierarchical Approach," Papers 1902.01015, arXiv.org, revised Sep 2020.
  • Handle: RePEc:arx:papers:1902.01015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.01015
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    4. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    6. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    7. Shanken, Jay, 1987. "A Bayesian approach to testing portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 19(2), pages 195-215, December.
    8. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    9. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    10. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    11. Avramov, Doron & Chordia, Tarun, 2006. "Predicting stock returns," Journal of Financial Economics, Elsevier, vol. 82(2), pages 387-415, November.
    12. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    13. Polson, Nicholas G & Tew, Bernard V, 2000. "Bayesian Portfolio Selection: An Empirical Analysis of the S&P 500 Index 1970-1996," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 164-173, April.
    14. Huang, Dashan & Li, Jiangyuan & Wang, Liyao & Zhou, Guofu, 2020. "Time series momentum: Is it there?," Journal of Financial Economics, Elsevier, vol. 135(3), pages 774-794.
    15. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    16. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    17. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    18. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
    19. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    20. McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
    21. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    22. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    23. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    24. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    25. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    26. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
    27. Harvey, Campbell R. & Zhou, Guofu, 1990. "Bayesian inference in asset pricing tests," Journal of Financial Economics, Elsevier, vol. 26(2), pages 221-254, August.
    28. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    29. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    30. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    31. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    32. Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
    33. Andras Fulop & Junye Li & Jun Yu, 2015. "Self-Exciting Jumps, Learning, and Asset Pricing Implications," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 876-912.
    34. Doron Avramov & Tarun Chordia, 2006. "Asset Pricing Models and Financial Market Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 1001-1040.
    35. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    36. Connolly, Robert A., 1991. "A posterior odds analysis of the weekend effect," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 51-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
    2. Guanhao Feng & Nicholas Polson, 2020. "Regularizing Bayesian predictive regressions," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 591-608, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    2. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    3. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
    4. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    5. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    6. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    7. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    8. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    9. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    10. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    11. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
    13. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    14. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    15. Sak, Halis & Huang, Tao & Chng, Michael T., 2024. "Exploring the factor zoo with a machine-learning portfolio," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    16. Branco, Rafael R. & Rubesam, Alexandre & Zevallos, Mauricio, 2024. "Forecasting realized volatility: Does anything beat linear models?," Journal of Empirical Finance, Elsevier, vol. 78(C).
    17. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
    18. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    19. Wang, Jianqiu & Wu, Ke & Tong, Guoshi & Chen, Dongxu, 2023. "Nonlinearity in the cross-section of stock returns: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 174-205.
    20. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.01015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.