IDEAS home Printed from https://ideas.repec.org/p/liu/liucec/212.html
   My bibliography  Save this paper

Building composite leading indexes in a dynamic factor model framework: a new proposal

Author

Abstract

One of the most problematic aspects in the work of policy makers and practitioners is having efficient forecasting tools combining two seemingly incompatible features: ease of use and completeness of the information set underlying the forecasts. Econometric literature provides different answers to these needs: Dynamic Factor Models (DFMs) optimally exploit the information coming from large datasets; composite leading indexes represent an immediate and flexible tool to anticipate the future evolution of a phenomenon. Curiously, the recent DFM literature has either ignored the construction of leading indexes or has made unsatisfactory choices as regards the criteria for aggregating the index components and the identification of factors that feed the index. This paper fills the gap and proposes a multi-step procedure for building composite leading indexes within a DFM framework. Once selected the target economic variable and estimated a DFM based on a large target-oriented dataset, we identify the common factor shocks through sign restrictions on the impact multipliers and simulate the structural form of the model. The Forecast Error Variance Decompositions obtained over a k steps-ahead simulation horizon define k sets of weights for aggregating factors (in a different way depending on the leading horizon) in order to get composite leading indexes. This procedure is used for a very preliminar empirical exercise aimed at forecasting crude nominal oil prices. The results seem to be encouraging and support the validity of the proposal: we generate a wide range of horizon-specific leading indexes with appreciable forecasting performances.

Suggested Citation

  • Massimiliano Serati & Gianni Amisano, 2008. "Building composite leading indexes in a dynamic factor model framework: a new proposal," LIUC Papers in Economics 212, Cattaneo University (LIUC).
  • Handle: RePEc:liu:liucec:212
    as

    Download full text from publisher

    File URL: http://www.biblio.liuc.it/liucpap/pdf/212.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    4. Olivier J. Blanchard & Jordi Gali, 2007. "The Macroeconomic Effects of Oil Shocks: Why are the 2000s So Different from the 1970s?," NBER Working Papers 13368, National Bureau of Economic Research, Inc.
    5. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    6. Robert S. Pindyck, 1979. "The Structure of World Energy Demand," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262661772, February.
    7. Gert Peersman, 2005. "What caused the early millennium slowdown? Evidence based on vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 185-207.
    8. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
    9. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    10. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    11. Carmen M. Reinhart & Peter Wickham, 1994. "Commodity Prices: Cyclical Weakness or Secular Decline?," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 175-213, June.
    12. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    13. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    14. R. Glenn Hubbard, 1986. "Supply Shocks and Price Adjustment in the World Oil Market," The Quarterly Journal of Economics, Oxford University Press, vol. 101(1), pages 85-102.
    15. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    16. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian, 2004. "Structural Change and Forecasting Long-Run Energy Prices," Staff Working Papers 04-5, Bank of Canada.
    17. Paul Cashin & Hong Liang & C. John McDermott, 2000. "How Persistent Are Shocks to World Commodity Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 47(2), pages 1-2.
    18. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    19. Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2005. "Markov-switching structural vector autoregressions: theory and application," FRB Atlanta Working Paper 2005-27, Federal Reserve Bank of Atlanta.
    20. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    21. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    22. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
    2. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    3. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
    4. Eickmeier, Sandra & Breitung, Jörg, 2005. "How synchronized are central and east European economies with the euro area? Evidence from a structural factor model," Discussion Paper Series 1: Economic Studies 2005,20, Deutsche Bundesbank.
    5. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Economics Working Papers ECO2008/22, European University Institute.
    6. Eickmeier, Sandra, 2005. "Common stationary and non-stationary factors in the euro area analyzed in a large-scale factor model," Discussion Paper Series 1: Economic Studies 2005,02, Deutsche Bundesbank.
    7. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    8. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    9. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    10. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    11. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    12. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    13. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
    14. Eickmeier, Sandra, 2006. "Comovements and heterogeneity in the Comovements and heterogeneity in the dynamic factor model," Discussion Paper Series 1: Economic Studies 2006,31, Deutsche Bundesbank.
    15. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    16. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
    17. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    18. Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    19. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    20. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liu:liucec:212. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Laura Ballestra). General contact details of provider: https://edirc.repec.org/data/liuccit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.