IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Time series forecasting by principal covariate regression

  • Heij, C.
  • Groenen, P.J.F.
  • van Dijk, D.J.C.

This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a limited number of factors -for instance, principal components- and, in a second step, these factors and their lags are used for forecasting. A possible disadvantage of these methods is that the construction of the components in the first step is not directly related to their use in forecasting in the second step. This motivates an alternative method, principal covariate regression (PCovR), where the two steps are combined in a single criterion. This method has been analyzed before within the framework of multivariate regression models. Moti- vated by the needs of macroeconomic time series forecasting, this paper discusses two adjustments of standard PCovR that are necessary to allow for lagged factors and for preferential predictors. The resulting nonlinear estimation problem is solved by means of a method based on iterative majorization. The paper discusses some numerical aspects and analyzes the method by means of simulations. Further, the empirical per- formance of PCovR is compared with that of the two-step principal component method by applying both methods to forecast four US macroeconomic time series from a set of 132 predictors, using the data set of Stock and Watson (2005).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/8003/ei2006-37.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 2006-37.

as
in new window

Length:
Date of creation: 31 Aug 2006
Date of revision:
Handle: RePEc:ems:eureir:8003
Contact details of provider: Postal: Postbus 1738, 3000 DR Rotterdam
Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  2. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  3. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  5. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  6. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
  7. Henk Kiers, 1990. "Majorization as a tool for optimizing a class of matrix functions," Psychometrika, Springer, vol. 55(3), pages 417-428, September.
  8. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(01), pages 3-20, February.
  9. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(01), pages 60-68, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:8003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.