IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/8003.html
   My bibliography  Save this paper

Time series forecasting by principal covariate regression

Author

Listed:
  • Heij, C.
  • Groenen, P.J.F.
  • van Dijk, D.J.C.

Abstract

This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a limited number of factors -for instance, principal components- and, in a second step, these factors and their lags are used for forecasting. A possible disadvantage of these methods is that the construction of the components in the first step is not directly related to their use in forecasting in the second step. This motivates an alternative method, principal covariate regression (PCovR), where the two steps are combined in a single criterion. This method has been analyzed before within the framework of multivariate regression models. Moti- vated by the needs of macroeconomic time series forecasting, this paper discusses two adjustments of standard PCovR that are necessary to allow for lagged factors and for preferential predictors. The resulting nonlinear estimation problem is solved by means of a method based on iterative majorization. The paper discusses some numerical aspects and analyzes the method by means of simulations. Further, the empirical per- formance of PCovR is compared with that of the two-step principal component method by applying both methods to forecast four US macroeconomic time series from a set of 132 predictors, using the data set of Stock and Watson (2005).

Suggested Citation

  • Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2006. "Time series forecasting by principal covariate regression," Econometric Institute Research Papers EI 2006-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:8003
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/8003/ei2006-37.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007. "Forecast comparison of principal component regression and principal covariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
    5. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    6. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. Henk Kiers, 1990. "Majorization as a tool for optimizing a class of matrix functions," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 417-428, September.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    11. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    12. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007. "Forecast comparison of principal component regression and principal covariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
    2. Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013. "Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Choi, In, 2012. "Efficient Estimation Of Factor Models," Econometric Theory, Cambridge University Press, vol. 28(2), pages 274-308, April.
    3. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    4. Chevallier, Julien, 2011. "Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model," Economic Modelling, Elsevier, vol. 28(1), pages 557-567.
    5. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    6. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Working Papers ECARES 2008_012, ULB -- Universite Libre de Bruxelles.
    7. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
    8. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    9. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    10. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    11. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    12. Paccagnini, Alessia, 2019. "Did financial factors matter during the Great Recession?," Economics Letters, Elsevier, vol. 174(C), pages 26-30.
    13. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    14. Ibarra-Ramírez Raúl, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
    15. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    16. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
    17. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    18. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    19. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    20. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.

    More about this item

    Keywords

    distributed lags; dynamic factor models; economic forecasting; iterative majorization; principal components; principal covariate regression;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:8003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.