IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/8003.html
   My bibliography  Save this paper

Time series forecasting by principal covariate regression

Author

Listed:
  • Heij, C.
  • Groenen, P.J.F.
  • van Dijk, D.J.C.

Abstract

This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a limited number of factors -for instance, principal components- and, in a second step, these factors and their lags are used for forecasting. A possible disadvantage of these methods is that the construction of the components in the first step is not directly related to their use in forecasting in the second step. This motivates an alternative method, principal covariate regression (PCovR), where the two steps are combined in a single criterion. This method has been analyzed before within the framework of multivariate regression models. Moti- vated by the needs of macroeconomic time series forecasting, this paper discusses two adjustments of standard PCovR that are necessary to allow for lagged factors and for preferential predictors. The resulting nonlinear estimation problem is solved by means of a method based on iterative majorization. The paper discusses some numerical aspects and analyzes the method by means of simulations. Further, the empirical per- formance of PCovR is compared with that of the two-step principal component method by applying both methods to forecast four US macroeconomic time series from a set of 132 predictors, using the data set of Stock and Watson (2005).

Suggested Citation

  • Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2006. "Time series forecasting by principal covariate regression," Econometric Institute Research Papers EI 2006-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:8003
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/8003/ei2006-37.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(01), pages 3-20, February.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(01), pages 60-68, February.
    5. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Henk Kiers, 1990. "Majorization as a tool for optimizing a class of matrix functions," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 417-428, September.
    9. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007. "Forecast comparison of principal component regression and principal covariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.

    More about this item

    Keywords

    distributed lags; dynamic factor models; economic forecasting; iterative majorization; principal components; principal covariate regression;

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:8003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.