IDEAS home Printed from https://ideas.repec.org/f/c/pro529.html
   My authors  Follow this author

Joyashree Roy

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.

    Cited by:

    1. Berner, Anne & Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," University of Göttingen Working Papers in Economics 422, University of Goettingen, Department of Economics.
    2. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    3. Zhao, Chuan & Guo, Qidong & Jia, Rongwen & Dong, Kangyin & Wang, Kun, 2023. "How does clean energy transition promote original design manufacturers? A three-party evolutionary game analysis," Energy Economics, Elsevier, vol. 126(C).
    4. Heesen, Florian & Madlener, Reinhard, 2018. "Revisiting Heat Energy Consumption Modeling: Household Production Theory Applied to Field Experimental Data," FCN Working Papers 4/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Anna Barwińska-Małajowicz & Radosław Pyrek & Krzysztof Szczotka & Jakub Szymiczek & Teresa Piecuch, 2023. "Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study," Energies, MDPI, vol. 16(10), pages 1-21, May.
    6. Chris Foulds & Sarah Royston & Thomas Berker & Efi Nakopoulou & Zareen Pervez Bharucha & Rosie Robison & Simone Abram & Branko Ančić & Stathis Arapostathis & Gabriel Badescu & Richard Bull & Jed Cohen, 2022. "An agenda for future Social Sciences and Humanities research on energy efficiency: 100 priority research questions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    7. Aneta Karasek & Barbara Fura & Magdalena Zajączkowska, 2023. "Assessment of Energy Efficiency in the European Union Countries in 2013 and 2020," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    9. Louis-Gaëtan Giraudet & Antoine Missemer, 2023. "The History of Energy Efficiency in Economics: Breakpoints and Regularities," Post-Print halshs-02301636, HAL.
    10. Wang, Lijun & Zha, Donglan & O’Mahony, Tadhg & Zhou, Dequn, 2023. "Energy efficiency lags and welfare boons: Understanding the rebound and welfare effects through China's urban households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Lin, Boqiang & Jia, Huanyu, 2024. "Present-biased individuals and their underinvestment in household energy efficiency: Evidence from first-tier Chinese cities," Energy Policy, Elsevier, vol. 185(C).
    12. Roger Fouquet & Ralph Hippe, 2022. "Twin Transitions of Decarbonisation and Digitalisation: A Historical Perspective on Energy and Information in European Economies," Working Papers 08-22, Association Française de Cliométrie (AFC).

  2. Saunders, Harry & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgubta, Shyamasree & de la Rue du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Qiang Lin, Bo &, 2020. "Energy Efficiency: What has it Delivered in the Last 40 Years?," FCN Working Papers 16/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Apr 2021.

    Cited by:

    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Heesen, Florian & Madlener, Reinhard, 2018. "Revisiting Heat Energy Consumption Modeling: Household Production Theory Applied to Field Experimental Data," FCN Working Papers 4/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Anna Barwińska-Małajowicz & Radosław Pyrek & Krzysztof Szczotka & Jakub Szymiczek & Teresa Piecuch, 2023. "Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study," Energies, MDPI, vol. 16(10), pages 1-21, May.
    4. Bongers, Anelí, 2024. "Household behavior and the rebound effect," Energy Economics, Elsevier, vol. 130(C).
    5. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    6. Delorme, Maxence & Santini, Alberto, 2022. "Energy-efficient automated vertical farms," Omega, Elsevier, vol. 109(C).
    7. Roger Fouquet & Ralph Hippe, 2022. "Twin Transitions of Decarbonisation and Digitalisation: A Historical Perspective on Energy and Information in European Economies," Working Papers 08-22, Association Française de Cliométrie (AFC).
    8. Malanima, Paolo, 2024. "International inequality in energy use and CO2 emissions (1820–2020)," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 233-244.
    9. Diaz de Garayo, S. & Martínez, A. & Astrain, D., 2022. "Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling," Applied Energy, Elsevier, vol. 309(C).

  3. Joyashree Roy, 2008. "Estimating the Economic Benefits of Arsenic Removal in India: A Case Study from West Bengal," Working Papers id:1380, eSocialSciences.

    Cited by:

    1. Paul Watkiss & Federica Cimato, 2016. "The economics of adaptation and climate-resilient development: lessons from projects for key adaptation challenges," GRI Working Papers 235, Grantham Research Institute on Climate Change and the Environment.
    2. Alam, M. Shahe & Islam, M. A., 2011. "Assessing The Effect Of Arsenic Contamination On Modern Rice Production: Evidences From A Farm Level Study," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 34(01-2), pages 15-28, December.
    3. Mahanta, Ratul & Chowdhury, Jayashree & Nath, Hiranya K., 2016. "Health costs of arsenic contamination of drinking water in Assam, India," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 30-42.

Articles

  1. Joyashree Roy & Anjal Prakash & Shreya Some & Chandni Singh & Rachel Bezner Kerr & Martina Angela Caretta & Cecilia Conde & Marta Rivera Ferre & Corinne Schuster-Wallace & Maria Cristina Tirado-von de, 2022. "Synergies and trade-offs between climate change adaptation options and gender equality: a review of the global literature," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.

    Cited by:

    1. Akter, Sonia, 2024. "Climate Resilient Development for Agriculture and Pathways for Gender Inclusivity," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344227, International Association of Agricultural Economists (IAAE).
    2. Teresa C. Herrador-Alcaide & Montserrat Hernández-Solís & Susana Cortés Rodríguez, 2023. "Mapping barriers to green supply chains in empirical research on green banking," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.

  2. Felix Creutzig & Leila Niamir & Xuemei Bai & Max Callaghan & Jonathan Cullen & Julio Díaz-José & Maria Figueroa & Arnulf Grubler & William F. Lamb & Adrian Leip & Eric Masanet & Érika Mata & Linus Mat, 2022. "Demand-side solutions to climate change mitigation consistent with high levels of well-being," Nature Climate Change, Nature, vol. 12(1), pages 36-46, January.

    Cited by:

    1. Hickel, Jason & Sullivan, Dylan, 2024. "How much growth is required to achieve good lives for all? Insights from needs-based analysis," World Development Perspectives, Elsevier, vol. 35(C).
    2. Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Oliver Braganza & Jakob Kapeller, 2025. "Reappraising consumption nudging—on liberty in the age of climate catastrophe," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    4. Andrew L. Fanning & Jason Hickel, 2023. "Compensation for atmospheric appropriation," Nature Sustainability, Nature, vol. 6(9), pages 1077-1086, September.
    5. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Mária Bartek-Lesi & Viktor Rácz & Bettina Dézsi, 2022. "Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    6. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Frauke Wiese & Nicolas Taillard & Emile Balembois & Benjamin Best & Stephane Bourgeois & José Campos & Luisa Cordroch & Mathilde Djelali & Alexandre Gabert & Adrien Jacob & Elliott Johnson & Sébastien, 2024. "The key role of sufficiency for low demand-based carbon neutrality and energy security across Europe," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. World Bank Group, 2024. "Poland Country Climate and Development Report," World Bank Publications - Reports 42286, The World Bank Group.
    9. Crelis F. Rammelt & Joyeeta Gupta & Diana Liverman & Joeri Scholtens & Daniel Ciobanu & Jesse F. Abrams & Xuemei Bai & Lauren Gifford & Christopher Gordon & Margot Hurlbert & Cristina Y. A. Inoue & Li, 2023. "Impacts of meeting minimum access on critical earth systems amidst the Great Inequality," Nature Sustainability, Nature, vol. 6(2), pages 212-221, February.
    10. Muttaqee, Mahmood & Stelmach, Greg & Zanocco, Chad & Flora, June & Rajagopal, Ram & Boudet, Hilary S., 2024. "Time of use pricing and likelihood of shifting energy activities, strategies, and timing," Energy Policy, Elsevier, vol. 187(C).
    11. Karen Page Winterich & Rebecca Walker Reczek & Tamar Makov, 2024. "How lack of knowledge on emissions and psychological biases deter consumers from taking effective action to mitigate climate change," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1475-1494, October.
    12. Zia Wadud & Muhammad Adeel & Jillian Anable, 2024. "Understanding the large role of long-distance travel in carbon emissions from passenger travel," Nature Energy, Nature, vol. 9(9), pages 1129-1138, September.
    13. Kılkış, Şiir, 2023. "Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability," Energy, Elsevier, vol. 285(C).
    14. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    15. Michael Berkebile-Weinberg & Danielle Goldwert & Kimberly C. Doell & Jay J. Bavel & Madalina Vlasceanu, 2024. "The differential impact of climate interventions along the political divide in 60 countries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Frauke Wiese & Nicolas Taillard & Emile Balembois & Benjamin Best & Stephane Bourgeois & José Campos & Luisa Cordroch & Mathilde Djelali & Alexandre Gabert & Adrien Jacob & Elliott Johnson & Sébastien, 2024. "The key role of sufficiency for low demand-based carbon neutrality and energy security across Europe," Post-Print hal-04747574, HAL.
    17. Plötz, Patrick & Wachsmuth, Jakob & Sprei, Frances & Gnann, Till & Speth, Daniel & Neuner, Felix & Link, Steffen, 2023. "Greenhouse gas emission budgets and policies for zero-carbon road transport in Europe," Working Papers "Sustainability and Innovation" S02/2023, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Anna Kristín Einarsdóttir & Gereon tho Pesch & Kevin Joseph Dillman & Marta Rós Karlsdóttir & Jukka Heinonen, 2024. "Consumption-Based Energy Footprints in Iceland: High and Equally Distributed," Energies, MDPI, vol. 17(10), pages 1-21, May.
    19. Johnson, Elliott & Betts-Davies, Sam & Barrett, John, 2023. "Comparative analysis of UK net-zero scenarios: The role of energy demand reduction," Energy Policy, Elsevier, vol. 179(C).
    20. Matteo Jarre & Michel Noussan & Edoardo Campisi, 2024. "Avoid–Shift–Improve: Are Demand Reduction Strategies Under-Represented in Current Energy Policies?," Energies, MDPI, vol. 17(19), pages 1-19, October.
    21. Hickel, Jason & Sullivan, Dylan, 2024. "How much growth is required to achieve good lives for all? Insights from needs-based analysis," LSE Research Online Documents on Economics 124460, London School of Economics and Political Science, LSE Library.
    22. Lisa Winkler & Drew Pearce & Jenny Nelson & Oytun Babacan, 2023. "The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    23. Sam Uden & Chris Greig, 2024. "Temporary mitigation off-ramps could help manage decarbonization headwinds," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    24. Robin Fears & Claudia Canales‐Holzeis & Deoraj Caussy & Sherilee L. Harper & Victor Chee Wai Hoe & Jeremy N. McNeil & Johanna Mogwitz & Volker ter Meulen & Andy Haines, 2024. "Climate action for health: Inter‐regional engagement to share knowledge to guide mitigation and adaptation actions," Global Policy, London School of Economics and Political Science, vol. 15(S5), pages 75-96, September.
    25. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    26. Fanning, Andrew L. & Hickel, Jason, 2023. "Compensation for atmospheric appropriation," LSE Research Online Documents on Economics 119717, London School of Economics and Political Science, LSE Library.
    27. Joel Millward-Hopkins & Vivien Fisch-Romito & Sascha Nick & Emile Chevrel, 2025. "Energy requirements for securing wellbeing in Switzerland and the space for affluence and inequality," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    28. McGarry, Connor & Dixon, James & Flower, Jack & Bukhsh, Waqquas & Brand, Christian & Bell, Keith & Galloway, Stuart, 2024. "Electrified heat and transport: Energy demand futures, their impacts on power networks and what it means for system flexibility," Applied Energy, Elsevier, vol. 360(C).
    29. Preinfalk, Eva & Bednar-Friedl, Birgit & Mayer, Jakob & Lauk, Christian & Mayer, Andreas, 2024. "Sustainability transitions in the agri-food system: Evaluating mitigation potentials, economy-wide effects, co-benefits and trade-offs for the case of Austria," Ecological Economics, Elsevier, vol. 226(C).
    30. Feng, Cuiyang & Dong, Liyan & Adbiat, Muhsen & Xu, Lixiao & Yu, Ao, 2023. "Critical transmission sectors in China's energy supply chains," Energy, Elsevier, vol. 266(C).
    31. Franziska Wiest & M. Gabriela Gamarra Scavone & Maya Tsuboya Newell & Ilona M. Otto & Andrew K. Ringsmuth, 2022. "Scaling Up Ecovillagers’ Lifestyles Can Help to Decarbonise Europe," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    32. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    33. Leanne S. Giordono & June Flora & Chad Zanocco & Hilary Boudet, 2022. "Food Practice Lifestyles: Identification and Implications for Energy Sustainability," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    34. Jessica Strefler & Leon Merfort & Nico Bauer & Miodrag Stevanović & Dennis Tänzler & Florian Humpenöder & David Klein & Gunnar Luderer & Michaja Pehl & Robert C. Pietzcker & Alexander Popp & Renato Ro, 2024. "Technology availability, sector policies and behavioral change are complementary strategies for achieving net-zero emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    35. Rik Heerden & Oreane Y. Edelenbosch & Vassilis Daioglou & Thomas Gallic & Luiz Bernardo Baptista & Alice Bella & Francesco Pietro Colelli & Johannes Emmerling & Panagiotis Fragkos & Robin Hasse & Joha, 2025. "Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050," Nature Energy, Nature, vol. 10(3), pages 380-394, March.

  3. Alita Chaladdee & Sohee Minsun Kim & Vilas Nitivattananon & Indrajit Pal & Joyashree Roy & Thongchai Roachanakanan, 2022. "Trend Analysis of Mainstreaming Flood Risk Reduction into Spatial Planning in Thailand," Sustainability, MDPI, vol. 14(3), pages 1-17, January.

    Cited by:

    1. Sarina Yusoff & Nur Hafizah Yusoff, 2022. "Disaster Risks Management through Adaptive Actions from Human-Based Perspective: Case Study of 2014 Flood Disaster," Sustainability, MDPI, vol. 14(12), pages 1-18, June.

  4. Oleg Lugovoy & Varun Jyothiprakash & Sourish Chatterjee & Samridh Sharma & Arijit Mukherjee & Abhishek Das & Shreya Some & Disha L. Dinesha & Nandini Das & Parthaa Bosu & Shyamasree Dasgupta & Lavanya, 2021. "Towards a Zero-Carbon Electricity System for India in 2050: IDEEA Model-Based Scenarios Integrating Wind and Solar Complementarity and Geospatial Endowments," Energies, MDPI, vol. 14(21), pages 1-57, October.

    Cited by:

    1. Bhattacharya, Subhadip & Banerjee, Rangan & Ramadesigan, Venkatasailanathan & Liebman, Ariel & Dargaville, Roger, 2024. "Bending the emission curve ― The role of renewables and nuclear power in achieving a net-zero power system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

  5. Minal Pathak & Joyashree Roy & Shaurya Patel & Shreya Some & Purvi Vyas & Nandini Das & Priyadarshi Shukla, 2021. "Communicating climate change findings from IPCC reports: insights from outreach events in India," Climatic Change, Springer, vol. 168(3), pages 1-14, October.

    Cited by:

    1. James Painter & Suzie Marshall & Katherine Leitzell, 2024. "Communicating climate futures: a multi-country study of how the media portray the IPCC scenarios in the 2021/2 Working Group reports," Climatic Change, Springer, vol. 177(6), pages 1-23, June.
    2. Patrick Devine-Wright & Lorraine Whitmarsh & Birgitta Gatersleben & Saffron O’Neill & Sarah Hartley & Kate Burningham & Benjamin Sovacool & Stewart Barr & Jillian Anable, 2022. "Placing people at the heart of climate action," PLOS Climate, Public Library of Science, vol. 1(5), pages 1-4, May.
    3. Friederike Hartz, 2024. "“We are not droids”– IPCC participants’ senses of responsibility and affective experiences across the production, assessment, communication and enactment of climate science," Climatic Change, Springer, vol. 177(6), pages 1-21, June.

  6. Nandini Das & Shyamasree Dasgupta & Joyashree Roy & Oluf Langhelle & Mohsen Assadi, 2021. "Emission Mitigation and Energy Security Trade-Off: Role of Natural Gas in the Indian Power Sector," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Cited by:

    1. Zahra, Samia & Fatima, Syeda Noreen, 2024. "Do energy diversification and green growth transition help to achieve the target of carbon neutrality? Testing the validity of the EKC hypothesis under the prism of green growth," Applied Energy, Elsevier, vol. 373(C).
    2. Nibedita, B. & Irfan, M., 2024. "Energy mix diversification in emerging economies: An econometric analysis of determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

  7. Matthias Honegger & Axel Michaelowa & Joyashree Roy, 2021. "Potential implications of carbon dioxide removal for the sustainable development goals," Climate Policy, Taylor & Francis Journals, vol. 21(5), pages 678-698, May.

    Cited by:

    1. Siddhartha Shankar Bhattacharyya & Pedro Mondaca & Oloka Shushupti & Sharjeel Ashfaq, 2023. "Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    2. Jing Tao & Wuliyasu Bai & Rongsheng Peng & Ziying Wu, 2024. "Sustainable Regional Straw Utilization: Collaborative Approaches and Network Optimization," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    3. Ya‐Ting Chan & Cou‐Chen Wu & Kuo‐Jui Wu & Anthony S. F. Chiu & Ming‐Lang Tseng, 2023. "The coherence between resource investment and performance for sustainable development goals in Taiwan cities: A hybrid influence analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3734-3760, October.
    4. Merk, Christine & Liebe, Ulf & Meyerhoff, Jürgen & Rehdanz, Katrin, 2023. "German citizens’ preference for domestic carbon dioxide removal by afforestation is incompatible with national removal potential," Open Access Publications from Kiel Institute for the World Economy 270884, Kiel Institute for the World Economy (IfW Kiel).
    5. Harrison, Nicholas & Herrera Jiménez, Juan & Krieger Merico, Luiz F. & Lorenzo, Santiago & Rondón Toro, Estefani & Rouse, Paul & Samaniego, Joseluis, 2023. "Nature-based solutions and carbon dioxide removal," Documentos de Proyectos 48691, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Cheng, WeiJin & Dilanchiev, Azer & Mammadov, Elshan & Wanjun, Sun, 2024. "The impact of natural resource extensive on green economic growth policies," Resources Policy, Elsevier, vol. 92(C).
    7. Filipović, Sanja & Lior, Noam & Radovanović, Mirjana, 2022. "The green deal – just transition and sustainable development goals Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Sovacool, Benjamin K. & Baum, Chad M. & Fritz, Livia, 2024. "Minority groups, Indigenousness and Indigeneity, and place in social perceptions of future climate interventions," World Development, Elsevier, vol. 183(C).
    9. Robin Fears & Claudia Canales‐Holzeis & Deoraj Caussy & Sherilee L. Harper & Victor Chee Wai Hoe & Jeremy N. McNeil & Johanna Mogwitz & Volker ter Meulen & Andy Haines, 2024. "Climate action for health: Inter‐regional engagement to share knowledge to guide mitigation and adaptation actions," Global Policy, London School of Economics and Political Science, vol. 15(S5), pages 75-96, September.
    10. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).

  8. Hasan Mahmud & Joyashree Roy, 2021. "Barriers to Overcome in Accelerating Renewable Energy Penetration in Bangladesh," Sustainability, MDPI, vol. 13(14), pages 1-28, July.

    Cited by:

    1. Priyom Das & S. M. Mezbahul Amin & Molla Shahadat Hossain Lipu & Shabana Urooj & Ratil H. Ashique & Ahmed Al Mansur & Md. Tariqul Islam, 2023. "Assessment of Barriers to Wind Energy Development Using Analytic Hierarchy Process," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    2. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    3. Abdul, Daud & Wenqi, Jiang & Sameeroddin, Mohd, 2023. "Prioritization of ecopreneurship barriers overcoming renewable energy technologies promotion: A comparative analysis of novel spherical fuzzy and Pythagorean fuzzy AHP approach," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).

  9. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    Cited by:

    1. Francisco Porles-Ochoa & Ruben Guevara, 2023. "Moderation of Clean Energy Innovation in the Relationship between the Carbon Footprint and Profits in CO₂e-Intensive Firms: A Quantitative Longitudinal Study," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    2. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    3. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    4. Liu, Junwei & Zhang, Yilun & Yin, Suzhen & Zhang, Yao & Luo, Xiaoling & Liu, Zhan, 2024. "Economic and exergy transmission analysis of the gas-liquid type compressed CO2 energy storage system," Renewable Energy, Elsevier, vol. 230(C).
    5. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Alessandro A. Carmona-Martínez & Anatoli Rontogianni & Myrto Zeneli & Panagiotis Grammelis & Olgu Birgi & Rainer Janssen & Benedetta Di Costanzo & Martijn Vis & Bas Davidis & Patrick Reumerman & Asier, 2024. "Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    7. Shafiee Roudbari, Erfan & Kantor, Ivan & Menon, Ramanunni Parakkal & Eicker, Ursula, 2024. "Optimization-based decision support for designing industrial symbiosis district energy systems under uncertainty," Applied Energy, Elsevier, vol. 367(C).
    8. Miroslav Variny & Kristián Hanus & Marek Blahušiak & Patrik Furda & Peter Illés & Ján Janošovský, 2021. "Energy and Environmental Assessment of Steam Management Optimization in an Ethylene Plant," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    9. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    10. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    11. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    12. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    13. Landon Yoder & Alora Cain & Ananya Rao & Nathaniel Geiger & Ben Kravitz & Mack Mercer & Deidra Miniard & Sangeet Nepal & Thomas Nunn & Mary Sluder & Grace Weiler & Shahzeen Z. Attari, 2024. "Muddling through Climate Change: A Qualitative Exploration of India and U.S. Climate Experts’ Perspectives on Solutions, Pathways, and Barriers," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    14. Elbaar, Evi Feronika & Masliani, 2024. "Renewable Energy Intentions in Indonesian Agriproduct Purchasing: Exploring Product Quality, Customer Orientation, Perceived Environmental Knowledge, and Farmers’ Knowledge with a Moderation Effect," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(4), December.
    15. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    16. Kuei-Kuei Lai & Sheng-Wei Lin & Huai-Wei Lo & Chia-Ying Hsiao & Po-Jung Lai, 2023. "Risk Assessment in Sustainable Production: Utilizing a Hybrid Evaluation Model to Identify the Waste Factors in Steel Plate Manufacturing," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    17. Paltsev, Sergey & Gurgel, Angelo & Morris, Jennifer & Chen, Henry & Dey, Subhrajit & Marwah, Sumita, 2022. "Economic analysis of the hard-to-abate sectors in India," Energy Economics, Elsevier, vol. 112(C).
    18. Jin, Enze & Jabarivelisdeh, Banafsheh & Schoeneberger, Carrie & Chamanara, Sanaz & Dunn, Jennifer B. & Christopher, Phillip & Masanet, Eric, 2024. "Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    19. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Liao, Kaicheng & Liu, Juan, 2024. "Digital infrastructure empowerment and urban carbon emissions: Evidence from China," Telecommunications Policy, Elsevier, vol. 48(6).
    21. Gupta, Dipti & Pathak, Minal, 2025. "Economic and environmental implications of India's industry transition to net zero," Applied Energy, Elsevier, vol. 379(C).
    22. Jiangyue Joy Ying & Benjamin K. Sovacool, 2021. "A fair trade? Expert perceptions of equity, innovation, and public awareness in China’s future Emissions Trading Scheme," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    23. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    24. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Lucas Veiga Ávila & Maria Alzira Pimenta Dinis & Paula M. Hernandez‐Diaz & Karina Batista & Bruno Borsari & Ismaila Rimi Abubakar, 2025. "Enhancing the contribution of higher education institutions to sustainable development research: A focus on post‐2015 SDGs," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 1745-1757, April.
    25. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    26. Maria Antoniadou, 2024. "Integrating Lean Management and Circular Economy for Sustainable Dentistry," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    27. Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
    28. Alessandro Rosengart & Maja Granzotto & Rudi Wierer & Gianluca Pazzaglia & Alessandro Salvi & Giovanni Dotelli, 2023. "The Green Value Engineering Methodology: A Sustainability-Driven Project Management Tool for Capital Projects in Process Industry," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    29. Song, Yang & Peskova, Monika & Rolando, Davide & Zucker, Gerhard & Madani, Hatef, 2023. "Estimating electric power consumption of in-situ residential heat pump systems: A data-driven approach," Applied Energy, Elsevier, vol. 352(C).
    30. Richardson-Barlow, Clare & Pimm, Andrew J. & Taylor, Peter G. & Gale, William F., 2022. "Policy and pricing barriers to steel industry decarbonisation: A UK case study," Energy Policy, Elsevier, vol. 168(C).
    31. Polleux, Louis & Schuhler, Thierry & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Ghazouani, Sami, 2021. "On the relationship between battery power capacity sizing and solar variability scenarios for industrial off-grid power plants," Applied Energy, Elsevier, vol. 302(C).
    32. Forsberg, Charles & Foss, Andrew W., 2023. "Fission battery markets and economic requirements," Applied Energy, Elsevier, vol. 329(C).
    33. Meenakshi Sharma & Rajesh Kaushal & Prashant Kaushik & Seeram Ramakrishna, 2021. "Carbon Farming: Prospects and Challenges," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    34. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    35. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    36. Agnieszka Kijo-Kleczkowska & Adam Gnatowski, 2022. "Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review," Energies, MDPI, vol. 15(6), pages 1-21, March.
    37. Rachidi, Ntebatše R. & Nwaila, Glen T. & Zhang, Steven E. & Bourdeau, Julie E. & Ghorbani, Yousef, 2021. "Assessing cobalt supply sustainability through production forecasting and implications for green energy policies," Resources Policy, Elsevier, vol. 74(C).
    38. Mohammed Hammam Mohammed Al-Madani & Yudi Fernando & Ming-Lang Tseng, 2022. "Assuring Energy Reporting Integrity: Government Policy’s Past, Present, and Future Roles," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    39. Ramanauske, Neringa & Balezentis, Tomas & Streimikiene, Dalia, 2023. "Biomass use and its implications for bioeconomy development: A resource efficiency perspective for the European countries," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    40. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    41. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    42. Alessio Ciambellotti & Guido Francesco Frate & Andrea Baccioli & Umberto Desideri, 2024. "High-Temperature Heat Pumps for Electrification and Cost-Effective Decarbonization in the Tissue Paper Industry," Energies, MDPI, vol. 17(17), pages 1-23, August.
    43. Bo Shao & Liang Zhang & Syed Ahsan Ali Shah, 2025. "Barriers and Opportunities in Implementing Carbon Neutrality Goals in China’s Heavy Industries," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
    44. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).
    45. Liu, Haiying & Khan, Irfan & Zakari, Abdulrasheed & Alharthi, Majed, 2022. "Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment," Energy Policy, Elsevier, vol. 170(C).
    46. Daria Zaborova & Tatiana Musorina, 2022. "Environmental and Energy-Efficiency Considerations for Selecting Building Envelopes," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    47. van Beuzekom, Iris & Hodge, Bri-Mathias & Slootweg, Han, 2021. "Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems," Applied Energy, Elsevier, vol. 292(C).
    48. Botros N. Hanna & Abdalla Abou-Jaoude & Nahuel Guaita & Paul Talbot & Christopher Lohse, 2024. "Navigating Economies of Scale and Multiples for Nuclear-Powered Data Centers and Other Applications with High Service Availability Needs," Energies, MDPI, vol. 17(20), pages 1-37, October.
    49. Yecid Muñoz-Maldonado & Edgar Correa-Quintana & Adalberto Ospino-Castro, 2023. "Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources," Energies, MDPI, vol. 16(19), pages 1-20, September.
    50. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    51. Kumar, Laveet & Sleiti, Ahmad K., 2024. "Systematic review on ammonia as a sustainable fuel for combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    52. Deger Saygin & Dolf Gielen, 2021. "Zero-Emission Pathway for the Global Chemical and Petrochemical Sector," Energies, MDPI, vol. 14(13), pages 1-28, June.
    53. Liu, Weipeng & Peng, Tao & Kishita, Yusuke & Umeda, Yasushi & Tang, Renzhong & Tang, Wangchujun & Hu, Luoke, 2021. "Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology," Applied Energy, Elsevier, vol. 304(C).
    54. Ramirez-Corredores, M.M. & Diaz, Luis A. & Gaffney, Anne M. & Zarzana, Christopher A., 2021. "Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    55. Calin-Cristian Cormos & Letitia Petrescu & Ana-Maria Cormos & Cristian Dinca, 2021. "Assessment of Hybrid Solvent—Membrane Configurations for Post-Combustion CO 2 Capture for Super-Critical Power Plants," Energies, MDPI, vol. 14(16), pages 1-12, August.
    56. Marcin Miroslaw Piatkowski & Shahid Yusuf & Wenting Wei, 2022. "Promoting Innovation to Decarbonize Industry in China," World Bank Publications - Reports 38488, The World Bank Group.
    57. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The declining performance of the oil sector: Implications for global climate change mitigation," Applied Energy, Elsevier, vol. 298(C).
    58. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    59. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    60. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
    61. Ali Zakeri & Kenneth S. Coley & Leili Tafaghodi, 2023. "Hydrogen-Based Direct Reduction of Iron Oxides: A Review on the Influence of Impurities," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    62. Samuel Adomako & Mai Dong Tran, 2024. "Exploring the effect of R&D support, green technology transfer, sustainable innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 4758-4769, October.
    63. Liu, Zheng & Huang, Yu-Qing & Shang, Wen-Long & Zhao, Yuan-Jun & Yang, Zao-Li & Zhao, Zhao, 2022. "Precooling energy and carbon emission reduction technology investment model in a fresh food cold chain based on a differential game," Applied Energy, Elsevier, vol. 326(C).
    64. Wang, Yufei & Liao, Zhongju, 2023. "Functional industrial policy mechanism under natural resource conflict: A case study on the Chinese new energy vehicle industry," Resources Policy, Elsevier, vol. 81(C).
    65. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    66. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    67. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    68. Zahra Jahangiri & Mackenzie Judson & Kwang Moo Yi & Madeleine McPherson, 2023. "A Deep Learning Approach for Exploring the Design Space for the Decarbonization of the Canadian Electricity System," Energies, MDPI, vol. 16(3), pages 1-21, January.
    69. Gunarayu, Mathesh Rao & Abdul Patah, Muhamad Fazly & Ashri Wan Daud, Wan Mohd, 2025. "Advancements in methane pyrolysis: A comprehensive review of parameters and molten catalysts in bubble column reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    70. Qi, Meng & Lee, Jaewon & Hong, Seokyoung & Kim, Jeongdong & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing," Energy, Elsevier, vol. 256(C).
    71. Wu, Shijie & Ren, Zongqiang & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Upcycling plastic waste into syngas by staged chemical looping gasification with modified Fe-based oxygen carriers," Applied Energy, Elsevier, vol. 353(PB).
    72. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    73. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).
    74. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    75. Nataliya Titova & Alina Cherepovitsyna & Tatiana Guseva, 2023. "Meeting the UN’s Sustainable Development Goals in the Decarbonization Agenda: A Case of Russian Oil and Gas Companies," Resources, MDPI, vol. 12(10), pages 1-23, October.
    76. Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
    77. Liz Wachs & Colin McMillan & Gale Boyd & Matt Doolin, 2022. "Exploring New Ways to Classify Industries for Energy Analysis and Modeling," Working Papers 22-49, Center for Economic Studies, U.S. Census Bureau.
    78. Jagriti Singh & Krishan Kumar Pandey & Anil Kumar & Farheen Naz & Sunil Luthra, 2023. "Drivers, barriers and practices of net zero economy: An exploratory knowledge based supply chain multi-stakeholder perspective framework," Operations Management Research, Springer, vol. 16(3), pages 1059-1090, September.
    79. Mustapha D. Ibrahim & Fatima A. S. Binofai & Maha O. A. Mohamad, 2022. "Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis," Energies, MDPI, vol. 15(18), pages 1-19, September.
    80. Hossein Eskandari Sabzi & Pedro E. J. Rivera-Díaz-del-Castillo, 2023. "Sustainable Powder-Based Additive Manufacturing Technology," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    81. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    82. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    83. Lena Tholen & Anna Leipprand & Dagmar Kiyar & Sarah Maier & Malte Küper & Thomas Adisorn & Andreas Fischer, 2021. "The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    84. Haoyang Chen & Xue Dong & Jie Lei & Ning Zhang & Qianrui Wang & Zhiang Shi & Jinxing Yang, 2024. "Life Cycle Assessment of Carbon Capture by an Intelligent Vertical Plant Factory within an Industrial Park," Sustainability, MDPI, vol. 16(2), pages 1-26, January.
    85. Francisco Carlos Vaz Sales & Michele De Souza & Luiz Reni Trento & Giancarlo Medeiros Pereira & Miriam Borchardt & Gabriel Sperandio Milan, 2023. "Food Waste in Distribution: Causes and Gaps to Be Filled," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    86. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    87. Stamatios K. Chrysikopoulos & Panos T. Chountalas & Dimitrios A. Georgakellos & Athanasios G. Lagodimos, 2024. "Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    88. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    89. Hörbe Emanuelsson, Anna & Rootzén, Johan & Johnsson, Filip, 2025. "Financing high-cost measures for deep emission cuts in the basic materials industry – Proposal for a value chain transition fund," Energy Policy, Elsevier, vol. 196(C).
    90. Leonel J. R. Nunes, 2025. "Reverse Logistics as a Catalyst for Decarbonizing Forest Products Supply Chains," Logistics, MDPI, vol. 9(1), pages 1-24, January.
    91. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.
    92. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    93. Behnam Zakeri & Katsia Paulavets & Leonardo Barreto-Gomez & Luis Gomez Echeverri & Shonali Pachauri & Benigna Boza-Kiss & Caroline Zimm & Joeri Rogelj & Felix Creutzig & Diana Ürge-Vorsatz & David G. , 2022. "Pandemic, War, and Global Energy Transitions," Energies, MDPI, vol. 15(17), pages 1-23, August.
    94. Chai, Rukuan & Liu, Yuetian & Wang, Jingru & Liu, Qianjun & Rui, Zhenhua, 2022. "CO2 utilization and sequestration in Reservoir: Effects and mechanisms of CO2 electrochemical reduction," Applied Energy, Elsevier, vol. 323(C).
    95. Groppi, Daniele & Pastore, Lorenzo Mario & Nastasi, Benedetto & Prina, Matteo Giacomo & Astiaso Garcia, Davide & de Santoli, Livio, 2025. "Energy modelling challenges for the full decarbonisation of hard-to-abate sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    96. Subhra Mondal & Subhankar Das & Vasiliki G. Vrana, 2024. "Exploring the Role of Artificial Intelligence in Achieving a Net Zero Carbon Economy in Emerging Economies: A Combination of PLS-SEM and fsQCA Approaches to Digital Inclusion and Climate Resilience," Sustainability, MDPI, vol. 16(23), pages 1-35, November.
    97. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    98. Lv, Zongze & Du, Hong & Xu, Shaojun & Deng, Tao & Ruan, Jiaqi & Qin, Changlei, 2024. "Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation," Applied Energy, Elsevier, vol. 355(C).
    99. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    100. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    101. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
    102. Utsav Bhattarai & Tek Maraseni & Laxmi P. Devkota & Armando Apan, 2024. "Evaluating four decades of energy policy evolution for sustainable development of a South Asian country—Nepal: A comprehensive review," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6703-6731, December.
    103. Dai, Jingqi & Li, Zongmin, 2023. "An equilibrium approach towards sustainable operation of a modern coal chemical industrial park," Omega, Elsevier, vol. 120(C).
    104. Zhang, Weike & Fan, Hongxia & Zhao, Qiwei, 2023. "Seeing green: How does digital infrastructure affect carbon emission intensity?," Energy Economics, Elsevier, vol. 127(PB).
    105. Qiujie Sun & Jingyu Zhou & Zhou Lan & Xiangyang Ma, 2023. "The Economic Influence of Energy Storage Construction in the Context of New Power Systems," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    106. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    107. Xi Zhang, 2022. "Incremental Innovation: Long-Term Impetus for Design Business Creativity," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    108. Anna Król & Monika Gajec & Jadwiga Holewa-Rataj & Ewa Kukulska-Zając & Mateusz Rataj, 2024. "Hydrogen Purification Technologies in the Context of Its Utilization," Energies, MDPI, vol. 17(15), pages 1-38, August.
    109. Olurotimi Oguntola & Steven Simske, 2023. "Continuous Assessment of the Environmental Impact and Economic Viability of Decarbonization Improvements in Cement Production," Resources, MDPI, vol. 12(8), pages 1-20, August.
    110. Michael Bampaou & Kyriakos D. Panopoulos, 2024. "A Comprehensive Overview of Technologies Applied in Hydrogen Valleys," Energies, MDPI, vol. 17(24), pages 1-37, December.
    111. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).
    112. Aleksander Sobolewski & Tomasz Chmielniak & Joanna Bigda & Tomasz Billig & Rafał Fryza & Józef Popowicz, 2022. "Closing of Carbon Cycle by Waste Gasification for Circular Economy Implementation in Poland," Energies, MDPI, vol. 15(14), pages 1-23, July.
    113. Tang, Ou & Rehme, Jakob & Cerin, Pontus & Huisingh, Donald, 2021. "Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties," Energy Policy, Elsevier, vol. 148(PB).
    114. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    115. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    116. Terlouw, Tom & Savvakis, Nikolaos & Bauer, Christian & McKenna, Russell & Arampatzis, George, 2025. "Designing multi-energy systems in Mediterranean regions towards energy autonomy," Applied Energy, Elsevier, vol. 377(PB).
    117. Taghikhah, Firouzeh Rosa & Taghikhah, Masoud & Marshall, Jonathan Paul & Voinov, Alexey, 2024. "Navigating the community renewable energy landscape: An analytics-driven policy formulation," Applied Energy, Elsevier, vol. 362(C).
    118. Deger Saygin & Herib Blanco & Francisco Boshell & Joseph Cordonnier & Kevin Rouwenhorst & Priyank Lathwal & Dolf Gielen, 2023. "Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    119. Lukas Folkens & Petra Schneider, 2022. "Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT)," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    120. Abdul Wahab & Farwa Batool & Murad Muhammad & Wajid Zaman & Rafid Magid Mikhlef & Muhammad Naeem, 2023. "Current Knowledge, Research Progress, and Future Prospects of Phyto-Synthesized Nanoparticles Interactions with Food Crops under Induced Drought Stress," Sustainability, MDPI, vol. 15(20), pages 1-40, October.
    121. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).

  10. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.

    Cited by:

    1. Lichtin, Florian & Smith, E. Keith & Axhausen, Kay W. & Bernauer, Thomas, 2024. "“How much should public transport services be expanded, and who should pay? Experimental evidence from Switzerland”," Transport Policy, Elsevier, vol. 158(C), pages 64-74.
    2. Ju, Yiyi & Sugiyama, Masahiro & Kato, Etsushi & Oshiro, Ken & Wang, Jiayang, 2022. "Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models," Applied Energy, Elsevier, vol. 318(C).
    3. Bauer, Jan M. & Aarestrup, Simon C. & Hansen, Pelle G. & Reisch, Lucia A., 2022. "Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Cordroch, Luisa & Hilpert, Simon & Wiese, Frauke, 2022. "Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Takuma Watari & André Cabrera Serrenho & Lukas Gast & Jonathan Cullen & Julian Allwood, 2023. "Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.
    7. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    8. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Zapata, Oscar, 2022. "Renewable Energy and Community Development," OSF Preprints tk59y, Center for Open Science.
    10. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Fabian Scheller & Karyn Morrissey & Karsten Neuhoff & Dogan Keles, 2023. "Green or greedy: the relationship between perceived benefits and homeowners' intention to adopt residential low-carbon technologies," Papers 2308.10104, arXiv.org.
    12. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    13. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    14. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    15. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    16. Zhang, Runsen & Hanaoka, Tatsuya & Liu, Jingyu & Li, Zhaoling & Sun, Lu, 2024. "Air pollution reduction co-benefits associated with low-carbon transport initiatives for carbon neutrality in China by 2060," Energy, Elsevier, vol. 313(C).
    17. Gough, Ian, 2022. "Two scenarios for sustainable welfare: a framework for an eco-social contract," LSE Research Online Documents on Economics 111950, London School of Economics and Political Science, LSE Library.
    18. Marion Leroutier & Philippe Quirion, 2022. "Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris," Post-Print hal-03921086, HAL.
    19. Xue, Hong & Wu, Zezhou & Sun, Zhi & Jiao, Shuaishuai, 2021. "Effects of policy on developer's implementation of off-site construction: The mediating role of the market environment," Energy Policy, Elsevier, vol. 155(C).
    20. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    21. Cathrin Zengerling, 2019. "Governing the City of Flows: How Urban Metabolism Approaches May Strengthen Accountability in Strategic Planning," Urban Planning, Cogitatio Press, vol. 4(1), pages 187-199.
    22. Ali Cenap Yologlu & Bulent Halisdemir, 2024. "Understanding the Social Determinants of Household Carbon Emissions for Carbon Mitigation Policies: The Case of Mersin, Turkey," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    23. Frauke Wiese & Nicolas Taillard & Emile Balembois & Benjamin Best & Stephane Bourgeois & José Campos & Luisa Cordroch & Mathilde Djelali & Alexandre Gabert & Adrien Jacob & Elliott Johnson & Sébastien, 2024. "The key role of sufficiency for low demand-based carbon neutrality and energy security across Europe," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    24. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    25. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    26. Olk, Christopher & Schneider, Colleen & Hickel, Jason, 2023. "How to pay for saving the world: Modern Monetary Theory for a degrowth transition," Ecological Economics, Elsevier, vol. 214(C).
    27. Castro, Damaris & Bleys, Brent, 2023. "Do people think they have enough? A subjective income sufficiency assessment," Ecological Economics, Elsevier, vol. 205(C).
    28. Josef Baumgartner & Gabriel Felbermayr & Claudia Kettner-Marx & Angela Köppl & Daniela Kletzan-Slamanig & Simon Loretz & Margit Schratzenstaller-Altzinger, 2022. "Stark steigende Energiepreise – Optionen für eine Entlastung von Haushalten und Unternehmen," WIFO Research Briefs 6, WIFO.
    29. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    30. Li, Mengyu & Keyβer, Lorenz & Kikstra, Jarmo S. & Hickel, Jason & Brockway, Paul E. & Dai, Nicolas & Malik, Arunima & Lenzen, Manfred, 2024. "Integrated assessment modelling of degrowth scenarios for Australia," LSE Research Online Documents on Economics 123739, London School of Economics and Political Science, LSE Library.
    31. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    32. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    33. Evangelia Karasmanaki & Konstantinos Ioannou & Georgios Siakas & Spyros Galatsidas & Georgios Tsantopoulos, 2025. "A Qualitative Analysis of Factors Leading to the Adoption of Residential Photovoltaics," Energies, MDPI, vol. 18(8), pages 1-18, April.
    34. Dobruszkes, Frédéric & Mattioli, Giulio & Gozzoli, Enzo, 2024. "The elephant in the room: Long-haul air services and climate change," Journal of Transport Geography, Elsevier, vol. 121(C).
    35. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    36. Morrissey, Karyn & Scheller, Fabian, 2024. "It takes a village: The role of community attributes in shaping solar photovoltaic adoption intention in Germany," Renewable Energy, Elsevier, vol. 237(PA).
    37. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    38. Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro, 2022. "Impacts of ride and car-sharing associated with fully autonomous cars on global energy consumptions and carbon dioxide emissions," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    39. Xuanwei Zhao & Jinsong Han, 2025. "How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review," Sustainability, MDPI, vol. 17(5), pages 1-28, March.
    40. Giles Thomson & Peter Newman, 2021. "Green Infrastructure and Biophilic Urbanism as Tools for Integrating Resource Efficient and Ecological Cities," Urban Planning, Cogitatio Press, vol. 6(1), pages 75-88.
    41. Hof, Andries F. & van Vuuren, Detlef P. & Berkhout, Frans & Geels, Frank W., 2020. "Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    42. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    43. James Carroll & Eleanor Denny & Ronan C. Lyons, 2020. "Better energy cost information changes household property investment decisions: Evidence from a nationwide experiment," Trinity Economics Papers tep1520, Trinity College Dublin, Department of Economics.
    44. Sukhov, Alexandre & Olsson, Lars E. & Friman, Margareta, 2022. "Necessary and sufficient conditions for attractive public Transport: Combined use of PLS-SEM and NCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 239-250.
    45. Gough, Ian, 2021. "Two scenarios for sustainable welfare: new ideas for an eco-social contract," LSE Research Online Documents on Economics 112594, London School of Economics and Political Science, LSE Library.
    46. Li Zhang & Lan Tao & Fangyi Yang & Yuchen Bao & Chong Li, 2024. "Promoting green transportation through changing behaviors with low-carbon-travel function of digital maps," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    47. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    48. Sun, Yefei & Hanemann, Michael, 2024. "Climate change adaptation in China: Differences in electricity consumption between rural and urban residents," Energy Economics, Elsevier, vol. 140(C).
    49. Leroutier, Marion & Quirion, Philippe, 2022. "Tackling car emissions in urban areas: Shift, Avoid, Improve," SocArXiv f5kmd, Center for Open Science.
    50. Olk, Christopher & Schneider, Colleen & Hickel, Jason, 2023. "How to pay for saving the world: Modern Monetary Theory for a degrowth transition," LSE Research Online Documents on Economics 120343, London School of Economics and Political Science, LSE Library.
    51. Anne‐Charlotte Marcombe & Behzod Tagaev, 2025. "The Diversity of the Circular Economy in the City of Tashkent, Uzbekistan," Journal of International Development, John Wiley & Sons, Ltd., vol. 37(1), pages 300-313, January.
    52. Patankar, Neha & Fell, Harrison G. & Rodrigo de Queiroz, Anderson & Curtis, John & DeCarolis, Joseph F., 2022. "Improving the representation of energy efficiency in an energy system optimization model," Applied Energy, Elsevier, vol. 306(PB).
    53. Yuru Guan & Yuli Shan & Ye Hang & Qingyun Nie & Yu Liu & Klaus Hubacek, 2025. "Unlocking global carbon reduction potential by embracing low-carbon lifestyles," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    54. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    55. Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
    56. Zhaohua Wang & Bin Lu & Bo Wang & Yueming (Lucy) Qiu & Han Shi & Bin Zhang & Jingyun Li & Hao Li & Wenhui Zhao, 2023. "Incentive based emergency demand response effectively reduces peak load during heatwave without harm to vulnerable groups," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    57. Frauke Wiese & Nicolas Taillard & Emile Balembois & Benjamin Best & Stephane Bourgeois & José Campos & Luisa Cordroch & Mathilde Djelali & Alexandre Gabert & Adrien Jacob & Elliott Johnson & Sébastien, 2024. "The key role of sufficiency for low demand-based carbon neutrality and energy security across Europe," Post-Print hal-04747574, HAL.
    58. Gough, Ian & Horn, Stefan & Rogers, Charlotte & Tunstall, Rebecca, 2024. "Fair decarbonisation of housing in the UK: a sufficiency approach," LSE Research Online Documents on Economics 122477, London School of Economics and Political Science, LSE Library.
    59. Plötz, Patrick & Wachsmuth, Jakob & Sprei, Frances & Gnann, Till & Speth, Daniel & Neuner, Felix & Link, Steffen, 2023. "Greenhouse gas emission budgets and policies for zero-carbon road transport in Europe," Working Papers "Sustainability and Innovation" S02/2023, Fraunhofer Institute for Systems and Innovation Research (ISI).
    60. Matos, Stelvia & Viardot, Eric & Sovacool, Benjamin K. & Geels, Frank W. & Xiong, Yu, 2022. "Innovation and climate change: A review and introduction to the special issue," Technovation, Elsevier, vol. 117(C).
    61. Lichtin, Florian & Smith, E. Keith & Axhausen, Kay W. & Bernauer, Thomas, 2024. "How to design publicly acceptable road pricing? Experimental insights from Switzerland," Ecological Economics, Elsevier, vol. 218(C).
    62. Bäuerle, Max Juri, 2022. "Striving for low-carbon lifestyles: An analysis of the mobility patterns of different urban household types with regard to emissions reductions in a real-world lab experiment in Berlin," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2022-601, WZB Berlin Social Science Center.
    63. Anna Kristín Einarsdóttir & Gereon tho Pesch & Kevin Joseph Dillman & Marta Rós Karlsdóttir & Jukka Heinonen, 2024. "Consumption-Based Energy Footprints in Iceland: High and Equally Distributed," Energies, MDPI, vol. 17(10), pages 1-21, May.
    64. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    65. Nieto, Jaime & Brockway, Paul E. & Sakai, Marco & Barrett, John, 2024. "Assessing the energy and socio-macroeconomic impacts of the EV transition: A UK case study 2020–2050," Applied Energy, Elsevier, vol. 370(C).
    66. Charlotte C Tanis & Floor H Nauta & Meier J Boersma & Maya V Van der Steenhoven & Denny Borsboom & Tessa F Blanken, 2022. "Practical behavioural solutions to COVID-19: Changing the role of behavioural science in crises," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-14, October.
    67. Johnson, Elliott & Betts-Davies, Sam & Barrett, John, 2023. "Comparative analysis of UK net-zero scenarios: The role of energy demand reduction," Energy Policy, Elsevier, vol. 179(C).
    68. Gorman, Will & Barbose, Galen & Miller, Cesca & White, Philip & Carvallo, Juan Pablo & Baik, Sunhee, 2024. "Evaluating the potential for solar-plus-storage backup power in the United States as homes integrate efficient, flexible, and electrified energy technologies," Energy, Elsevier, vol. 304(C).
    69. Córcoles, Carmen & López, Luis Antonio & Osorio, Pilar & Zafrilla, Jorge, 2024. "The carbon footprint of the empty Castilla-La Mancha," Energy Policy, Elsevier, vol. 184(C).
    70. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    71. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    72. Lisa Winkler & Drew Pearce & Jenny Nelson & Oytun Babacan, 2023. "The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    73. Nils Brandenstein & Kathrin Ackermann & Jan Rummel, 2025. "The trouble with carbon footprint analysis in behavioral climate research," Climatic Change, Springer, vol. 178(3), pages 1-13, March.
    74. Giles Thomson & Peter Newman, 2021. "Green Infrastructure and Biophilic Urbanism as Tools for Integrating Resource Efficient and Ecological Cities," Urban Planning, Cogitatio Press, vol. 6(1), pages 75-88.
    75. Jiawei Hu & Eva Ayaragarnchanakul & Zheng Yang & Felix Creutzig, 2024. "Shared pooled mobility essential complement to decarbonize China’s transport sector until 2060," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-19, June.
    76. Hof, A.F. & Esmeijer, K. & de Boer, H.S. & Daioglou, V. & Doelman, J.C. & Elzen, M.G.J. den & Gernaat, D.E.H.J. & van Vuuren, D.P., 2022. "Regional energy diversity and sovereignty in different 2 °C and 1.5 °C pathways," Energy, Elsevier, vol. 239(PB).
    77. Jaime Nieto & Pedro B. Moyano & Diego Moyano & Luis Javier Miguel, 2023. "Is energy intensity a driver of structural change? Empirical evidence from the global economy," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 283-296, February.
    78. Long, Zoe & Kitt, Shelby & Axsen, Jonn, 2021. "Who supports which low-carbon transport policies? Characterizing heterogeneity among Canadian citizens," Energy Policy, Elsevier, vol. 155(C).
    79. Guilhem Lecouteux & Léonard Moulin, 2023. "Cycling in the Aftermath of COVID-19: An Empirical Estimation of the Social Dynamics of Bicycle Adoption in Paris," GREDEG Working Papers 2023-02, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    80. Joel Millward-Hopkins & Vivien Fisch-Romito & Sascha Nick & Emile Chevrel, 2025. "Energy requirements for securing wellbeing in Switzerland and the space for affluence and inequality," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    81. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    82. McGarry, Connor & Dixon, James & Flower, Jack & Bukhsh, Waqquas & Brand, Christian & Bell, Keith & Galloway, Stuart, 2024. "Electrified heat and transport: Energy demand futures, their impacts on power networks and what it means for system flexibility," Applied Energy, Elsevier, vol. 360(C).
    83. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    84. Annina Thaller & Eva Fleiß & Hilmar Brohmer & Daniel Köstenbaumer & Alfred Posch & Ursula Athenstaedt, 2023. "When perceived fairness and acceptance go hand in hand–Drivers of regulatory and economic policies for low-carbon mobility," PLOS Climate, Public Library of Science, vol. 2(5), pages 1-12, May.
    85. Infante-Amate, Juan & Iriarte-Goñi, Iñaki & Urrego-Mesa, Alexander & Gingrich, Simone, 2022. "From woodfuel to industrial wood: A socio-metabolic reading of the forest transition in Spain (1860–2010)," Ecological Economics, Elsevier, vol. 201(C).
    86. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    87. Brand, Christian & Anable, Jillian & Ketsopoulou, Ioanna & Watson, Jim, 2020. "Road to zero or road to nowhere? Disrupting transport and energy in a zero carbon world," Energy Policy, Elsevier, vol. 139(C).
    88. Tobias Eibinger & Hans Manner, 2022. "The Effectiveness of Policy Measures to Reduce CO2 Emissions from Passenger Cars in Austria," Graz Economics Papers 2022-04, University of Graz, Department of Economics.
    89. Andreas Fazekas & Christopher Bataille & Adrien Vogt-Schilb, 2022. "Achieving net-zero prosperity: how governments can unlock 15 essential transformations," Post-Print halshs-03742125, HAL.
    90. Dobruszkes, Frédéric & Mattioli, Giulio & Mathieu, Laurette, 2022. "Banning super short-haul flights: Environmental evidence or political turbulence?," Journal of Transport Geography, Elsevier, vol. 104(C).
    91. Ramón Mahía & Rafael de Arce, 2024. "Quantifying the excess carbon footprint and its main determinants of Spanish households," Energy & Environment, , vol. 35(4), pages 1907-1935, June.
    92. Stefan Pauliuk & Niko Heeren, 2021. "Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 479-493, April.
    93. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    94. Eirini Triantafyllidou & Anastasia Zabaniotou, 2022. "Digital Technology and Social Innovation Promoting a Green Citizenship: Development of the “Go Sustainable Living” Digital Application," Circular Economy and Sustainability, Springer, vol. 2(1), pages 141-164, March.
    95. Araceli Galiano-Coronil & Manuela Ortega-Gil & Belén Macías-Varela & Rafael Ravina-Ripoll, 2023. "An approach for analysing and segmenting messages about the SDGs on Twitter from the perspective of social marketing," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 20(3), pages 635-658, September.
    96. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    97. Michael Jakob & William F. Lamb & Jan Christoph Steckel & Christian Flachsland & Ottmar Edenhofer, 2020. "Understanding different perspectives on economic growth and climate policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    98. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).

  11. Dasgupta, Shyamasree & Roy, Joyashree, 2015. "Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India," Energy Policy, Elsevier, vol. 83(C), pages 1-13.

    Cited by:

    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    3. Qiang Du & Yi Li & Libiao Bai, 2017. "The Energy Rebound Effect for the Construction Industry: Empirical Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
    4. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    5. Verma, Om Prakash & Manik, Gaurav & Sethi, Sushant Kumar, 2019. "A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 90-109.
    6. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    7. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    8. Chen, Yufen & Liu, Yanni, 2021. "How biased technological progress sustainably improve the energy efficiency: An empirical research of manufacturing industry in China," Energy, Elsevier, vol. 230(C).
    9. Sun, Xiaojun & Fan, Yee Van & Lei, Yalin & Pan, Ting & Varbanov, Petar Sabev, 2024. "Mechanism of directed technological investment on energy productivity and energy structure: A unified theoretical framework," Energy Economics, Elsevier, vol. 140(C).
    10. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    11. Oak, Hena & Bansal, Sangeeta, 2022. "Enhancing energy efficiency of Indian industries: Effectiveness of PAT scheme," Energy Economics, Elsevier, vol. 113(C).
    12. Assi, Ala Fathi & Zhakanova Isiksal, Aliya & Tursoy, Turgut, 2021. "Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model," Renewable Energy, Elsevier, vol. 165(P1), pages 689-700.
    13. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    14. Idoko Ahmed Itodo & Shahrzad Safaeimanesh & Festus Victor Bekun, 2017. "Energy Use and Growth of Manufacturing Sector: Evidence from Turkey," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(1), pages 88-96, March.
    15. Prantik Bagchi & Santosh Kumar Sahu, 2020. "Energy Intensity, Productivity and Pollution Loads: Empirical Evidence from Manufacturing Sector of India," Studies in Microeconomics, , vol. 8(2), pages 194-211, December.
    16. Yongchun Huang & Chengmeng Chen & Dejin Su & Shangshuo Wu, 2020. "Comparison of leading‐industrialisation and crossing‐industrialisation economic growth patterns in the context of sustainable development: Lessons from China and India," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1077-1085, September.
    17. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
    18. Chen, Yu & Lin, Boqiang, 2021. "How does infrastructure affect energy services?," Energy, Elsevier, vol. 231(C).
    19. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    20. Juan Qian & Ruibing Ji, 2022. "Impact of Energy-Biased Technological Progress on Inclusive Green Growth," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    21. Assaad Ghazouani & Wanjun Xia & Mehdi Ben Jebli & Umer Shahzad, 2020. "Exploring the Role of Carbon Taxation Policies on CO 2 Emissions: Contextual Evidence from Tax Implementation and Non-Implementation European Countries," Sustainability, MDPI, vol. 12(20), pages 1-16, October.

  12. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.

    Cited by:

    1. Sunil Kumar Jauhar & Praveen Vijaya Raj Pushpa Raj & Sachin Kamble & Saurabh Pratap & Shivam Gupta & Amine Belhadi, 2024. "A deep learning-based approach for performance assessment and prediction: A case study of pulp and paper industries," Annals of Operations Research, Springer, vol. 332(1), pages 405-431, January.
    2. Rajesh Sharma & Muhammad Shahbaz & Pradeep Kautish & Xuan Vinh Vo, 2023. "Diversified imports as catalysts for ecological footprint: examining the BRICS experience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3153-3181, April.

  13. Barun Deb Pal & Sanjib Pohit & Joyashree Roy, 2012. "Social Accounting Matrix For India," Economic Systems Research, Taylor & Francis Journals, vol. 24(1), pages 77-99, August.

    Cited by:

    1. Weitzel, Matthias & Ghosh, Joydeep & Peterson, Sonja & Pradhan, Basanta, 2013. "Effects of international climate policy for India: Evidence from a national and global CGE model," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79771, Verein für Socialpolitik / German Economic Association.
    2. Rada, Codrina & von Arnim, Rudiger, 2014. "India's structural transformation and role in the world economy," Journal of Policy Modeling, Elsevier, vol. 36(1), pages 1-23.
    3. Venkatesh, P. & Pal, Barun D. & Dubey, Sarvesh K. & Sangeetha, V. & Balasubramanian, M. & Renjini, V.R. & Singh, D.R. & Kar, Amit & Balaji, S J & Pal, Suresh, 2020. "Structural transformation, export promotion policy options, and their impact on the Indian economy: a social accounting matrix (SAM) approach," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 33(01), June.
    4. Lilia Endriana & Djoni Hartono & Tony Irawan, 2016. "Green economy priority sectors in Indonesia: a SAM approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 115-135, January.
    5. Vijay P. Ojha & Joydeep Ghosh & Basanta K. Pradhan, 2022. "The role of public expenditure on secondary and higher education for achieving inclusive growth in India," Metroeconomica, Wiley Blackwell, vol. 73(1), pages 49-77, February.
    6. Darío Debowicz & Paul Dorosh & Hamza Haider & Sherman Robinson, 2013. "A Disaggregated and Macro-consistent Social Accounting Matrix for Pakistan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 2(1), pages 1-25, December.
    7. Koushik Das, 2014. "General Equilibrium Analysis of Strategic Trade," Foreign Trade Review, , vol. 49(3), pages 219-245, August.
    8. Ojha, Vijay P. & Pohit, Sanjib & Ghosh, Joydeep, 2020. "Recycling carbon tax for inclusive green growth: A CGE analysis of India," Energy Policy, Elsevier, vol. 144(C).
    9. Pohit, Sanjib & Pal, Barun, 2011. "Productivity and technical change in Indian economy," MPRA Paper 32736, University Library of Munich, Germany.
    10. Koushik Das & Pinaki Chakraborti, 2014. "General Equilibrium Analysis of Strategic Trade: A Computable General Equilibrium Model for India," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 165-181, July.
    11. Chetana Chaudhuri & Devender Pratap & Sanjib Pohit, 2024. "Estimation of SAM for India: An Application for India’s Energy Transition Targets," NCAER Working Papers 160, National Council of Applied Economic Research.
    12. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW Kiel).
    13. Koushik Das & Pinaki Chakraborti, 2012. "International Trade, Environment and Market Imperfection: A Computable General Equilibrium Analysis for India," South Asian Journal of Macroeconomics and Public Finance, , vol. 1(2), pages 157-190, December.
    14. Debowicz, Darío & Dorosh, Paul A. & Robinson, Sherman & Haider, Syed Hamza, 2012. "A 2007-08 social accounting matrix for Pakistan," PSSP working papers 1, International Food Policy Research Institute (IFPRI).
    15. Xinxiong Wu & Chen Chen Yong & Su Teng Lee, 2022. "Addressing the COVID-19 Shock: The Potential Job Creation in China by the RCEP," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    16. Darian McBain & Ali Alsamawi, 2014. "Quantitative accounting for social economic indicators," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 193-202, August.
    17. Amrita Ganguly & Koushik Das, 2017. "Multi-sectoral Analysis of Foreign Investment and Trade Liberalization in India: A CGE Modelling Approach," Global Business Review, International Management Institute, vol. 18(5), pages 1345-1372, October.
    18. Codrina Rada & Rüdiger von Arnim, 2012. "Indias structural transformation and role in the world economy," Working Paper Series, Department of Economics, University of Utah 2012_05, University of Utah, Department of Economics.
    19. Barun Deb Pal & Jayatilleke S. Bandarlage, 2017. "Value-added disaggregated social accounting matrix for the Indian economy of the year 2007–2008," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-20, December.

  14. Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.

    Cited by:

    1. Gupta, Manish & Sengupta, Ramprasad, 2012. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Working Papers 12/105, National Institute of Public Finance and Policy.
    2. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    3. Antonietti, Roberto & Fontini, Fulvio, 2019. "Does energy price affect energy efficiency? Cross-country panel evidence," Energy Policy, Elsevier, vol. 129(C), pages 896-906.
    4. Wu, Anbing & Chen, Junying & Zhang, Yanyan, 2023. "Natural resources and energy resources prices an answer to energy insecurity? The role of mineral, forest, coal resources and financial development," Resources Policy, Elsevier, vol. 87(PA).
    5. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    6. De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," ZEW Discussion Papers 13-052, ZEW - Leibniz Centre for European Economic Research.
    7. Sun, Xiaojun & Lei, Yalin & Wang, Xue-Chao & Zhao, Jun & Varbanov, Petar Sabev, 2024. "Directional nature of technological progress in the petrochemical industry prompting energy marginal substitution," Energy, Elsevier, vol. 310(C).
    8. Zhao, Zhenyu & Zhang, Yao & Yang, Yujia & Yuan, Shuguang, 2022. "Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity," Energy, Elsevier, vol. 255(C).
    9. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    10. Bhattacharya, Soma & Cropper, Maureen L., 2010. "Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study," RFF Working Paper Series dp-10-20, Resources for the Future.
    11. Ahmed Imran Hunjra & Tahar Tayachi & Muhammad Irfan Chani & Peter Verhoeven & Asad Mehmood, 2020. "The Moderating Effect of Institutional Quality on the Financial Development and Environmental Quality Nexus," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    12. Sun, Xiaojun & Fan, Yee Van & Lei, Yalin & Pan, Ting & Varbanov, Petar Sabev, 2024. "Mechanism of directed technological investment on energy productivity and energy structure: A unified theoretical framework," Energy Economics, Elsevier, vol. 140(C).
    13. Fatih Karanfil & Yasser Yeddir-Tamsamani, 2009. "Is technological change biased toward energy? -A multi-sectoral analysis for the French economy," Documents de Travail de l'OFCE 2009-12, Observatoire Francais des Conjonctures Economiques (OFCE).
    14. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    15. Lee, Chien-Chiang & Olasehinde-Williams, Godwin & Özkan, Oktay, 2024. "Is geopolitical oil price uncertainty forcing the world to use energy more efficiently? Evidence from advanced statistical methods," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 908-919.
    16. Lan-yue, Zhang & Yao, Li & Jing, Zhang & Bing, Luo & Ji-min, He & Shi-huai, Deng & Xin, Huang & ling, Luo & Fei, Shen & Hong, Xiao & Yan-zong, Zhang & Yuan-wei, Li & Li-lin, Wang & Xue-Ping, Yao & Ya-, 2017. "The relationships among energy consumption, economic output and energy intensity of countries at different stage of development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 258-264.
    17. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    18. Ane-Mari Androniceanu & Raluca Dana Căplescu & Manuela Tvaronavičienė & Cosmin Dobrin, 2021. "The Interdependencies between Economic Growth, Energy Consumption and Pollution in Europe," Energies, MDPI, vol. 14(9), pages 1-23, April.
    19. Enrica De Cian, 2009. "Factor-Augmenting Technical Change: An Empirical Assessment," Working Papers 2009.18, Fondazione Eni Enrico Mattei.
    20. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    21. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    22. Dasgupta, Shyamasree & Roy, Joyashree, 2015. "Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India," Energy Policy, Elsevier, vol. 83(C), pages 1-13.
    23. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    24. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    25. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
    26. Tang, Maogang & Li, Zhen & Hu, Fengxia & Wu, Baijun & Zhang, Ruihan, 2021. "Market failure, tradable discharge permit, and pollution reduction: Evidence from industrial firms in China," Ecological Economics, Elsevier, vol. 189(C).
    27. Liang Liu & Lianshui Li, 2021. "The effect of directed technical change on carbon dioxide emissions: evidence from China’s industrial sector at the provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2463-2486, July.

  15. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.

    Cited by:

    1. Gupta, Manish & Sengupta, Ramprasad, 2012. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Working Papers 12/105, National Institute of Public Finance and Policy.
    2. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    3. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    4. Frédéric Reynès, 2017. "The Cobb-Douglas function as a flexible function. Analysing the substitution between capital, labor and energy," Documents de Travail de l'OFCE 2017-12, Observatoire Francais des Conjonctures Economiques (OFCE).
    5. Adetutu, Morakinyo O. & Glass, Anthony J. & Weyman-Jones, Thomas G., 2016. "Decomposing energy demand across BRIIC countries," Energy Economics, Elsevier, vol. 54(C), pages 396-404.
    6. Ralf Martin, 2010. "Why is the USA so energy intensive? Evidence from US multinationals in the UK," GRI Working Papers 15, Grantham Research Institute on Climate Change and the Environment.
    7. Reynès, Frédéric, 2019. "The Cobb–Douglas function as a flexible function," Mathematical Social Sciences, Elsevier, vol. 97(C), pages 11-17.
    8. Suh, Dong Hee, 2015. "Identifying Factor Substitution and Energy Intensity in the U.S. Agricultural Sector," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205264, Agricultural and Applied Economics Association.
    9. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    10. Frédéric Reynés, 2019. "The Cobb-Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities," Post-Print hal-03403639, HAL.
    11. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2018. "Capital-energy substitutability in manufacturing sectors: methodological and policy implications," Departmental Working Papers of Economics - University 'Roma Tre' 0234, Department of Economics - University Roma Tre.
    12. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    13. Frédéric Reynés, 2019. "The Cobb-Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities," SciencePo Working papers Main hal-03403639, HAL.
    14. Ricardo J. Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2008. "Financial Crash, Commodity Prices and Global Imbalances," NBER Working Papers 14521, National Bureau of Economic Research, Inc.
    15. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    16. Frédéric Reynés, 2017. "The Cobb-Douglas function as a flexible function," Working Papers hal-03582829, HAL.
    17. Ekins, Paul & Pollitt, Hector & Summerton, Philip & Chewpreecha, Unnada, 2012. "Increasing carbon and material productivity through environmental tax reform," Energy Policy, Elsevier, vol. 42(C), pages 365-376.
    18. Frédéric Reynés, 2017. "The Cobb-Douglas function as a flexible function," SciencePo Working papers Main hal-03582829, HAL.
    19. Rigoberto Ariel Yepez-Garcia & Todd M. Johnson & Luis Alberto Andres, 2011. "Meeting the Balance of Electricity Supply and Demand in Latin America and the Caribbean," World Bank Publications - Books, The World Bank Group, number 2334, April.
    20. Agnolucci, Paolo, 2009. "The effect of the German and British environmental taxation reforms: A simple assessment," Energy Policy, Elsevier, vol. 37(8), pages 3043-3051, August.
    21. Galetovic, Alexander & Muñoz, Cristián M., 2011. "Regulated electricity retailing in Chile," Energy Policy, Elsevier, vol. 39(10), pages 6453-6465, October.
    22. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    23. Ricardo J. Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2008. "Financial Crash, Commody Prices, and Global Inbalances," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 39(2 (Fall)), pages 1-68.
    24. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    25. Shaik, Saleem & Yeboah, Osei-Agyeman, 2018. "Does climate influence energy demand? A regional analysis," Applied Energy, Elsevier, vol. 212(C), pages 691-703.
    26. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    27. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    28. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
    29. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    30. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    31. Zha, Donglan & Ding, Ning, 2015. "Threshold characteristic of energy efficiency on substitution between energy and non-energy factors," Economic Modelling, Elsevier, vol. 46(C), pages 180-187.

  16. Sathaye, Jayant & Murtishaw, Scott & Price, Lynn & Lefranc, Maurice & Roy, Joyashree & Winkler, Harald & Spalding-Fecher, Randall, 2004. "Multiproject baselines for evaluation of electric power projects," Energy Policy, Elsevier, vol. 32(11), pages 1303-1317, July.

    Cited by:

    1. Scott Murtishaw & Jayant Sathaye & Christina Galitsky & Kristel Dorion, 2006. "Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 645-665, May.
    2. Tsikalakis, A.G. & Hatziargyriou, N.D., 2007. "Environmental benefits of distributed generation with and without emissions trading," Energy Policy, Elsevier, vol. 35(6), pages 3395-3409, June.
    3. Ana M. Marina Domingo & Javier M. Rey-Hernández & Julio F. San José Alonso & Raquel Mata Crespo & Francisco J. Rey Martínez, 2018. "Energy Efficiency Analysis Carried Out by Installing District Heating on a University Campus. A Case Study in Spain," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    5. Murtishaw, Scott & Sathaye, Jayant & LeFranc, Maurice, 2006. "Spatial boundaries and temporal periods for setting greenhouse gas performance standards," Energy Policy, Elsevier, vol. 34(12), pages 1378-1388, August.
    6. Zhang, Chi & Shukla, P.R. & Victor, David G. & Heller, Thomas C. & Biswas, Debashish & Nag, Tirthankar, 2006. "Baselines for carbon emissions in the Indian and Chinese power sectors: Implications for international carbon trading," Energy Policy, Elsevier, vol. 34(14), pages 1900-1917, September.
    7. Partnership for Market Readiness, 2013. "Options and Guidance for the Development of Baselines," World Bank Publications - Reports 21824, The World Bank Group.

  17. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.

    Cited by:

    1. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    2. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    3. Martín Bordón Lesme & Jaume Freire-González & Emilio Padilla Rosa, 2021. "The direct rebound effect for two income groups: The case of Paraguay," Working Papers wpdea2103, Department of Applied Economics at Universitat Autonoma of Barcelona.
    4. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    5. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    6. Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
    7. Steinberger, Julia K. & van Niel, Johan & Bourg, Dominique, 2009. "Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy," Energy Policy, Elsevier, vol. 37(1), pages 361-370, January.
    8. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    9. Kanitkar, Tejal & Banerjee, Rangan & Jayaraman, T., 2019. "An integrated modeling framework for energy economy and emissions modeling: A case for India," Energy, Elsevier, vol. 167(C), pages 670-679.
    10. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    11. Franceschini, Simone & Borup, Mads & Rosales-Carreón, Jesús, 2018. "Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 1-11.
    12. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Amy Z. Chen & Jeremy Fischer & Andrew Fraker & Neil Buddy Shah & Stuart Shirrell & Daniel Stein, 2017. "Welfare impacts of an entry-level solar home system in Uganda," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 9(2), pages 277-294, April.
    14. Karakaya, Etem & Alataş, Sedat & Erkara, Elif & Mert, Betül & Akdoğan, Tuğba & Hiçyılmaz, Burcu, 2024. "The rebound effect of material and energy efficiency for the EU and its major trading partners," Energy Economics, Elsevier, vol. 134(C).
    15. Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
    16. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    17. Chun, Natalie & Jiang, Yi, 2013. "How households in Pakistan take on energy efficient lighting technology," Energy Economics, Elsevier, vol. 40(C), pages 277-284.
    18. Heesen, Florian & Madlener, Reinhard, 2018. "Revisiting Heat Energy Consumption Modeling: Household Production Theory Applied to Field Experimental Data," FCN Working Papers 4/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    19. Han, Hongyun & Zhou, Zinan, 2024. "The rebound effect of energy consumption and its determinants in China's agricultural production," Energy, Elsevier, vol. 290(C).
    20. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    21. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).
    22. Wang, Xiaolei & Wen, Xiaohui & Xie, Chunping, 2018. "An evaluation of technical progress and energy rebound effects in China's iron & steel industry," Energy Policy, Elsevier, vol. 123(C), pages 259-265.
    23. Vélez-Henao, Johan-Andrés & García-Mazo, Claudia-Maria & Freire-González, Jaume & Vivanco, David Font, 2020. "Environmental rebound effect of energy efficiency improvements in Colombian households," Energy Policy, Elsevier, vol. 145(C).
    24. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    25. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    26. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    27. Roger Fouquet & Peter J.G. Pearson, 2012. "The Long Run Demand for Lighting:Elasticities and Rebound Effects in Different Phases of Economic Development," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    28. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "State-of-the-Art of Mini Grids for Rural Electrification in West Africa," Energies, MDPI, vol. 14(4), pages 1-21, February.
    29. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    30. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    31. Biying Yu & Junyi Zhang & Akimasa Fujiwara, 2016. "Who rebounds in the private transport sector? A comparative analysis between Beijing and Tokyo," Environment and Planning B, , vol. 43(3), pages 561-579, May.
    32. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    33. Bhattacharya, Soma & Cropper, Maureen L., 2010. "Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study," RFF Working Paper Series dp-10-20, Resources for the Future.
    34. Cutz, L. & Masera, O. & Santana, D. & Faaij, A.P.C., 2017. "Switching to efficient technologies in traditional biomass intensive countries: The resultant change in emissions," Energy, Elsevier, vol. 126(C), pages 513-526.
    35. Jin, Sang-Hyeon, 2007. "The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea," Energy Policy, Elsevier, vol. 35(11), pages 5622-5629, November.
    36. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    37. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    38. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    39. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    40. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2015. "Fuel Efficiency Improvements - Feedback Mechanisms and Distributional Effects in the Oil Market," CESifo Working Paper Series 5478, CESifo.
    41. Jihye Byun & Sungjin Park & Kitae Jang, 2017. "Rebound Effect or Induced Demand? Analyzing the Compound Dual Effects on VMT in the U.S," Sustainability, MDPI, vol. 9(2), pages 1-10, February.
    42. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    43. Hanna Krings, 2015. "International Trade in Second-hand Electronic Goods and the Resulting Global Rebound Effect," MAGKS Papers on Economics 201538, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    44. Cravioto, Jordi & Yamasue, Eiji & Okumura, Hideyuki & Ishihara, Keiichi N., 2014. "Energy service satisfaction in two Mexican communities: A study on demographic, household, equipment and energy related predictors," Energy Policy, Elsevier, vol. 73(C), pages 110-126.
    45. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
    46. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    47. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    48. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    49. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    50. Christina Pakusch & Gunnar Stevens & Alexander Boden & Paul Bossauer, 2018. "Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    51. Su, Yu-Wen, 2019. "Residential electricity demand in Taiwan: Consumption behavior and rebound effect," Energy Policy, Elsevier, vol. 124(C), pages 36-45.
    52. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    53. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    54. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    55. Blum, Bianca & Hübner, Julian & Müller, Sarah & Neumärker, Karl Justus Bernhard, 2018. "Challenges for sustainable environmental policy: Influencing factors of the rebound effect in energy efficiency improvements," The Constitutional Economics Network Working Papers 02-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    56. Galvin, Ray, 2015. "The rebound effect, gender and social justice: A case study in Germany," Energy Policy, Elsevier, vol. 86(C), pages 759-769.
    57. Shalinee Sourabh & Balagopal G. Menon & Biswajit Mahanty, 2024. "Econometric analysis of circular economy co-flow process in metal industry," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1583-1602, April.
    58. Munten, Pauline & Swaen, Valérie & Vanhamme, Joëlle, 2024. "Exploring rebound effects in Access-Based services (ABS)," Journal of Business Research, Elsevier, vol. 182(C).
    59. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    60. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    61. Thapar, Sapan, 2020. "Energy consumption behavior: A data-based analysis of urban Indian households," Energy Policy, Elsevier, vol. 143(C).
    62. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    63. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    64. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    65. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    66. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2013. "Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing," Energy Policy, Elsevier, vol. 57(C), pages 441-453.
    67. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    68. Dasgupta, Shyamasree & Roy, Joyashree, 2015. "Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India," Energy Policy, Elsevier, vol. 83(C), pages 1-13.
    69. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    70. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    71. Polimeni, John M & Iorgulescu Polimeni, Raluca, 2007. "Energy Consumption in Transitional Economies: Jevons' Paradox for Romania, Bulgaria, Hungary, and Poland (Part I)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 63-80, September.
    72. Vera, Sonia & Bernal, Felipe & Sauma, Enzo, 2013. "Do distribution companies loose money with an electricity flexible tariff?: A review of the Chilean case," Energy, Elsevier, vol. 55(C), pages 295-303.
    73. Vazhayil, Joy P. & Balasubramanian, R., 2013. "Optimization of India's power sector strategies using weight-restricted stochastic data envelopment analysis," Energy Policy, Elsevier, vol. 56(C), pages 456-465.
    74. Francisco Salas-Molina & David Pla-Santamaria & Maria Luisa Vercher-Ferrándiz & Javier Reig-Mullor, 2020. "Inverse Malthusianism and Recycling Economics: The Case of the Textile Industry," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    75. Marion Drut, 2013. "Vers un système de transport opérant selon les principes de l'économie de la fonctionnalité?," Working Papers hal-00996379, HAL.
    76. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    77. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    78. Spalding-Fecher, Randall & Clark, Alix & Davis, Mark & Simmonds, Gillian, 2002. "The economics of energy efficiency for the poor—a South African case study," Energy, Elsevier, vol. 27(12), pages 1099-1117.
    79. Marion Drut, 2012. "Vers un système de transport opérant selon les principes de l'économie de la fonctionnalité," Working Papers hal-00992621, HAL.
    80. Baležentis, Tomas & Butkus, Mindaugas & Štreimikienė, Dalia & Shen, Zhiyang, 2021. "Exploring the limits for increasing energy efficiency in the residential sector of the European Union: Insights from the rebound effect," Energy Policy, Elsevier, vol. 149(C).
    81. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2014. "Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential energy demand," Efficiency Series Papers 2014/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    82. Murray, Cameron K, 2011. "Income dependent direct and indirect rebound effects from ’green’ consumption choices in Australia," MPRA Paper 34973, University Library of Munich, Germany.
    83. World Bank, 2011. "Energy Intensive Sectors of the Indian Economy : Path to Low Carbon Development," World Bank Publications - Reports 2798, The World Bank Group.
    84. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    85. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    86. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.

  18. Joyashree Roy & Jayant Sathaye & Alan Sanstad & Puran Mongia & Katja Schumacher, 1999. "Productivity Trends in India’s Energy Intensive Industries," The Energy Journal, , vol. 20(3), pages 33-61, July.

    Cited by:

    1. Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.
    2. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.

  19. Joyashree Roy & Jayant Sathaye & Alan Sanstad & Puran Mongia & Katja Schumacher, 1999. "Productivity Trends in India's Energy Intensive Industries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 33-61.

    Cited by:

    1. Gupta, Manish & Sengupta, Ramprasad, 2012. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Working Papers 12/105, National Institute of Public Finance and Policy.
    2. Bernstein, Paul M. & Montgomery, W. David & Tuladhar, Sugandha D., 2006. "Potential for reducing carbon emissions from non-Annex B countries through changes in technology," Energy Economics, Elsevier, vol. 28(5-6), pages 742-762, November.
    3. Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.
    4. Suho Bae, 2009. "The responses of manufacturing businesses to geographical differences in electricity prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(2), pages 453-472, June.
    5. Mongia, Puran & Schumacher, Katja & Sathaye, Jayant, 2001. "Policy reforms and productivity growth in India's energy intensive industries," Energy Policy, Elsevier, vol. 29(9), pages 715-724, July.
    6. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    7. Fan, Ying & Liao, Hua & Wei, Yi-Ming, 2007. "Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China," Energy Policy, Elsevier, vol. 35(4), pages 2287-2295, April.
    8. Sabuj Kumar Mandal, 2009. "Technological Progress, Scale Effect and Total Factor Productivity Growth in Indian Cement Industry: Panel Estimation of Stochastic Production Frontier," Working Papers 216, Institute for Social and Economic Change, Bangalore.
    9. William Reidhead, 2001. "Achieving agricultural pumpset efficiency in rural India," Journal of International Development, John Wiley & Sons, Ltd., vol. 13(2), pages 135-151.
    10. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    11. Prantik Bagchi & Santosh Kumar Sahu, 2020. "Energy Intensity, Productivity and Pollution Loads: Empirical Evidence from Manufacturing Sector of India," Studies in Microeconomics, , vol. 8(2), pages 194-211, December.
    12. Dasgupta, Shyamasree & Roy, Joyashree, 2015. "Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India," Energy Policy, Elsevier, vol. 83(C), pages 1-13.
    13. Parikh, Kirit S. & Karandikar, Vivek & Rana, Ashish & Dani, Prasanna, 2009. "Projecting India's energy requirements for policy formulation," Energy, Elsevier, vol. 34(8), pages 928-941.
    14. Sabuj Kumar Mandal & S Madheswaran, 2009. "Energy Use Efficiency in Indian Cement Industry: Application of Data Envelopment Analysis and Directional Distance Function," Working Papers 230, Institute for Social and Economic Change, Bangalore.

  20. Santadas Ghosh & Joyashree Roy, 1998. "Qualitative Input-Output Analysis of the Indian Economic Structure," Economic Systems Research, Taylor & Francis Journals, vol. 10(3), pages 263-274.

    Cited by:

    1. Axel During & Hermann Schnabel, 2000. "Imputed Interindustry Technology Flows - A Comparative SMFA Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 363-375.
    2. GARCIA-MUÑIZ, Ana Salome, 2013. "Modelling Linkages Versus Leakages Networks: The Case Of Spain," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(1), pages 43-54.
    3. Hermann Schnabl, 2003. "The ECA-method for Identifying Sensitive Reactions within an IO Context," Economic Systems Research, Taylor & Francis Journals, vol. 15(4), pages 495-504.
    4. Kuwamori, Hiroshi & Okamoto, Nobuhiro, 2007. "Industrial Networks between China and the Countries of the Asia-Pacific Region," IDE Discussion Papers 110, Institute of Developing Economies, Japan External Trade Organization(JETRO).

  21. Roy, Joyashree & Jana, Sebak, 1998. "Solar lanterns for rural households," Energy, Elsevier, vol. 23(1), pages 67-68.

    Cited by:

    1. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    2. Nduka, Eleanya, 2021. "How to get rural households out of energy poverty in Nigeria: A contingent valuation," Energy Policy, Elsevier, vol. 149(C).
    3. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    4. Chaurey, A. & Kandpal, T.C., 2009. "Solar lanterns for domestic lighting in India: Viability of central charging station model," Energy Policy, Elsevier, vol. 37(11), pages 4910-4918, November.
    5. Chakrabarti, Snigdha & Chakrabarti, Subhendu, 2002. "Rural electrification programme with solar energy in remote region-a case study in an island," Energy Policy, Elsevier, vol. 30(1), pages 33-42, January.
    6. Bond, M. & Aye, Lu & Fuller, R.J., 2010. "Solar lanterns or solar home lighting systems – Community preferences in East Timor," Renewable Energy, Elsevier, vol. 35(5), pages 1076-1082.
    7. Masako Numata & Masahiro Sugiyama & Wunna Swe & Daniel del Barrio Alvarez, 2021. "Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference," Energies, MDPI, vol. 14(5), pages 1-17, March.

Chapters

  1. Barun Deb Pal & Vijay P. Ojha & Sanjib Pohit & Joyashree Roy, 2015. "Impact of Economic Growth on Greenhouse Gas (GHG) Emissions—Social Accounting Matrix (SAM) Multiplier Analysis," India Studies in Business and Economics, in: GHG Emissions and Economic Growth, edition 127, chapter 4, pages 43-60, Springer.

    Cited by:

    1. Cabalu, Helen & Koshy, Paul & Corong, Erwin & Rodriguez, U-Primo E. & Endriga, Benjamin A., 2015. "Modelling the impact of energy policies on the Philippine economy: Carbon tax, energy efficiency, and changes in the energy mix," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 222-237.
    2. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    3. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

  2. Barun Deb Pal & Vijay P. Ojha & Sanjib Pohit & Joyashree Roy, 2015. "Greenhouse Gas (GHG) Emissions in India—A Structural Decomposition Analysis," India Studies in Business and Economics, in: GHG Emissions and Economic Growth, edition 127, chapter 5, pages 61-71, Springer.

    Cited by:

    1. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.

Books

  1. Barun Deb Pal & Vijay P. Ojha & Sanjib Pohit & Joyashree Roy, 2015. "GHG Emissions and Economic Growth," India Studies in Business and Economics, Springer, edition 127, number 978-81-322-1943-9, January.

    Cited by:

    1. Ojha, Vijay P. & Pohit, Sanjib & Ghosh, Joydeep, 2020. "Recycling carbon tax for inclusive green growth: A CGE analysis of India," Energy Policy, Elsevier, vol. 144(C).
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    3. López, María del Carmen Delgado & Fonseca-Zendejas, Alejandro Steven, 2023. "Analysis of the intersectoral synchronization of the Mexican economy," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 225-235.
    4. Cabalu, Helen & Koshy, Paul & Corong, Erwin & Rodriguez, U-Primo E. & Endriga, Benjamin A., 2015. "Modelling the impact of energy policies on the Philippine economy: Carbon tax, energy efficiency, and changes in the energy mix," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 222-237.
    5. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    6. Weijiang Liu & Tingting Liu & Yangyang Li & Min Liu, 2021. "Recycling Carbon Tax under Different Energy Efficiency Improvements: A CGE Analysis of China," Sustainability, MDPI, vol. 13(9), pages 1-17, April.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.