IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p378-d1018623.html
   My bibliography  Save this article

Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal

Author

Listed:
  • Ana Ferreira

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Manuel Duarte Pinheiro

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Jorge de Brito

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Ricardo Mateus

    (ISISE, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal)

Abstract

(1) Background: The embodied energy of building materials is a significant contributor to climate change, in tandem with the energy use intensity (EUI). Yet, studies on the material impacts of European retail buildings, namely with relation to EUI, are missing. Hence, this study set out to: (i) evaluate the embodied energy and carbon emissions for a European retail building; (ii) quantify the material flow in terms of mass; (iii) compare the embodied aspects to the operational EUI and carbon use intensity (CUI); (iv) assess building materials with higher impacts; and (v) investigate strategies to mitigate materials’ impacts. (2) Methods: A Portuguese retail building was selected as a case study. A simplified LCA method was followed (cradle-to-gate), analysing the shell building materials in terms of primary energy demand and global warming potential. (3) Results: the embodied energy represented 32% of total lifecycle energy while the embodied carbon represented 94%. EUI was 1×kWh/m 2 /y while CUI was 21 kg CO 2 eq/m 2 /y. The embodied energy was 4248 kWh/m 2 , and the embodied carbon was 1689 kg CO 2 eq/m 2 . Cement mortar, steel, concrete, and extruded polystyrene were the most intensive materials. (4) Conclusions: The embodied impacts of the analysed store could decrease by choosing stone wool sandwich panels for the facades instead of extruded polystyrene panels and roof systems with metal sheet coverings instead of bitumen materials.

Suggested Citation

  • Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:378-:d:1018623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2019. "Decarbonizing strategies of the retail sector following the Paris Agreement," Energy Policy, Elsevier, vol. 135(C).
    2. Edgar G. Hertwich & James K. Hammitt & William S. Pease, 2000. "A Theoretical Foundation for Life‐Cycle Assessment: Recognizing the Role of Values in Environmental Decision Making," Journal of Industrial Ecology, Yale University, vol. 4(1), pages 13-28, January.
    3. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    4. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    5. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    6. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    7. Galvez-Martos, Jose-Luis & Styles, David & Schoenberger, Harald, 2013. "Identified best environmental management practices to improve the energy performance of the retail trade sector in Europe," Energy Policy, Elsevier, vol. 63(C), pages 982-994.
    8. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Ferreira & Manuel Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Assessing the Sustainability of Retail Buildings: The Portuguese Method LiderA," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    2. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    3. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    4. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    5. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    8. Seunguk Na & Inkwan Paik, 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    9. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    10. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    12. Jaime Solís-Guzmán & Cristina Rivero-Camacho & Desirée Alba-Rodríguez & Alejandro Martínez-Rocamora, 2018. "Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    13. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    14. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    15. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    16. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    17. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    19. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    20. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:378-:d:1018623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.