IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v140y2024ics0140988324006662.html
   My bibliography  Save this article

Climate change adaptation in China: Differences in electricity consumption between rural and urban residents

Author

Listed:
  • Sun, Yefei
  • Hanemann, Michael

Abstract

We use high-frequency electricity consumption data (17.58 million observations) at level of household to parameterize the relationship between household electricity consumption and temperature for southern China. We find that although urban households are more sensitive to extreme temperature than rural households, with climate warming, rural households would adopt climate change adaptive behavior (e.g. installing air-conditioning), and rural households' sensitivity to temperature would increase significantly. Considering the long-run response, we find that climate warming as predicted under the RCP8.5 scenario would lead to an increase of 23.42 % and 22.28 % in the summer peak electricity consumption of rural and urban households in 2061–2080. Compared with the results of short-run response, ignoring the long-run response would lead to the summer peak electricity consumption of rural and urban households being underestimated by 56.13 % and 20.11 %. Only for our research sample, the economic losses in rural and urban areas caused by climate warming are as high as 1.358 billion Chinese yuan and 0.617 billion Chinese yuan in 2061–2080 under the RCP 8.5 scenario. Climate change would bring serious losses to rural residents.

Suggested Citation

  • Sun, Yefei & Hanemann, Michael, 2024. "Climate change adaptation in China: Differences in electricity consumption between rural and urban residents," Energy Economics, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:eneeco:v:140:y:2024:i:c:s0140988324006662
    DOI: 10.1016/j.eneco.2024.107958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324006662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    2. Berner, Anne & Bruns, Stephan & Moneta, Alessio & Stern, David I., 2022. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," Energy Economics, Elsevier, vol. 110(C).
    3. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    4. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2019. "The effect of house energy efficiency programs on the extensive and intensive margin of lower-income households’ investment behavior," Energy Policy, Elsevier, vol. 128(C), pages 607-615.
    5. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
    6. Agarwal, Sumit & Qin, Yu & Shi, Luwen & Wei, Guoxu & Zhu, Hongjia, 2021. "Impact of temperature on morbidity: New evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    7. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    8. Huang, Luling & Nock, Destenie & Cong, Shuchen & Qiu, Yueming (Lucy), 2023. "Inequalities across cooling and heating in households: Energy equity gaps," Energy Policy, Elsevier, vol. 182(C).
    9. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    10. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    11. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    12. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    13. Ki, Jaehong & Yoon, D.K., 2024. "The impact of urban form on residential electricity consumption: Panel data analyses of South Korean urban municipalities," Energy Policy, Elsevier, vol. 186(C).
    14. Melissa R. Allen & Steven J. Fernandez & Joshua S. Fu & Mohammed M. Olama, 2016. "Impacts of climate change on sub-regional electricity demand and distribution in the southern United States," Nature Energy, Nature, vol. 1(8), pages 1-9, August.
    15. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    16. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2020. "Climate change impacts on electricity demand: The case of a Southern European country," Utilities Policy, Elsevier, vol. 67(C).
    17. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    18. Maximilian Auffhammer, 2018. "Climate Adaptive Response Estimation: Short And Long Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption Using Big Data," NBER Working Papers 24397, National Bureau of Economic Research, Inc.
    19. Alberto Salvo, 2018. "Electrical appliances moderate households’ water demand response to heat," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    20. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    21. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    22. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    23. Debora Maia-Silva & Rohini Kumar & Roshanak Nateghi, 2020. "The critical role of humidity in modeling summer electricity demand across the United States," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    2. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    3. Meixuan Teng & Hua Liao & Paul J. Burke & Tianqi Chen & Chen Zhang, 2022. "Adaptive responses: the effects of temperature levels on residential electricity use in China," Climatic Change, Springer, vol. 172(3), pages 1-20, June.
    4. Deng, Nana & Wang, Bo & Wang, Zhaohua, 2023. "Does targeted poverty alleviation improve households’ adaptation to hot weathers: Evidence from electricity consumption of poor households," Energy Policy, Elsevier, vol. 183(C).
    5. Edward Manderson & Timothy Considine, 2021. "The Effect of Temperature on Energy Demand and the Role of Adaptation," Economics Discussion Paper Series 2112, Economics, The University of Manchester.
    6. Li, Haoyang & Chen, Yifeng & Ma, Mingming, 2024. "Temperature and life satisfaction: Evidence from Chinese older adults," Ecological Economics, Elsevier, vol. 225(C).
    7. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    8. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    9. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
    10. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    11. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    12. Song, Feng & Miao, Xintong & Xia, Fang, 2025. "Fighting climate change together: The regional heterogenous impacts of climate change and potentials of regional power market," Energy Economics, Elsevier, vol. 141(C).
    13. Jian Cui & Lunyu Xie & Xinye Zheng, 2023. "Climate change, air conditioning, and urbanization—evidence from daily household electricity consumption data in China," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    14. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    15. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    16. Du, Kerui & Yu, Ying & Wei, Chu, 2020. "Climatic impact on China's residential electricity consumption: Does the income level matter?," China Economic Review, Elsevier, vol. 63(C).
    17. Yue Hua & Yun Qiu & Xiaoqing Tan, 2023. "The effects of temperature on mental health: evidence from China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(3), pages 1293-1332, July.
    18. Gibney, Garreth & McDermott, Thomas K.J. & Cullinan, John, 2023. "Temperature, morbidity, and behavior in milder climates," Economic Modelling, Elsevier, vol. 118(C).
    19. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    20. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:140:y:2024:i:c:s0140988324006662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.