IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v141y2025ics0140988324008247.html
   My bibliography  Save this article

Fighting climate change together: The regional heterogenous impacts of climate change and potentials of regional power market

Author

Listed:
  • Song, Feng
  • Miao, Xintong
  • Xia, Fang

Abstract

This study measures the impact of the climate change on China's electricity sector and how the heterogenous impact across a large geographic area could be employed to better adapt to climate change. A unique dataset of daily load in China's five southern provinces in 2018 is employed to estimate the temperature response functions and predict the future changes driven by climate change. The results show that although the rising temperature will normalize the higher level of electricity demand on average, it exerts a heterogeneous impact on the electricity demand of different provinces, thereby creating opportunities for trade and cooperation among these five provinces. By using a cost-minimization model, we find that reforming the electricity sector through economic dispatch and expanding the dispatch area can serve as a cost-effective “soft” approach to adapting to climate change.

Suggested Citation

  • Song, Feng & Miao, Xintong & Xia, Fang, 2025. "Fighting climate change together: The regional heterogenous impacts of climate change and potentials of regional power market," Energy Economics, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008247
    DOI: 10.1016/j.eneco.2024.108115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324008247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    2. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    3. Maximilian Auffhammer & Anin Aroonruengsawat, 2012. "Erratum to: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 113(3), pages 1101-1104, August.
    4. repec:cdl:agrebk:qt9nx1r0fx is not listed on IDEAS
    5. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    6. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    7. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    8. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    9. Maximilian Auffhammer & Catherine D. Wolfram, 2014. "Powering Up China: Income Distributions and Residential Electricity Consumption," American Economic Review, American Economic Association, vol. 104(5), pages 575-580, May.
    10. Melissa R. Allen & Steven J. Fernandez & Joshua S. Fu & Mohammed M. Olama, 2016. "Impacts of climate change on sub-regional electricity demand and distribution in the southern United States," Nature Energy, Nature, vol. 1(8), pages 1-9, August.
    11. Jaglom, Wendy S. & McFarland, James R. & Colley, Michelle F. & Mack, Charlotte B. & Venkatesh, Boddu & Miller, Rawlings L. & Haydel, Juanita & Schultz, Peter A. & Perkins, Bill & Casola, Joseph H. & M, 2014. "Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model®," Energy Policy, Elsevier, vol. 73(C), pages 524-539.
    12. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.
    13. Brinkerink, Maarten & Gallachóir, Brian Ó & Deane, Paul, 2019. "A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 274-287.
    14. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    15. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    16. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Kai & Lin, Boqiang, 2025. "Do extreme temperatures exacerbate residential energy expenses burden in China?," Energy Economics, Elsevier, vol. 146(C).
    2. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    3. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    4. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    5. Ye, Yuxiang & Koch, Steven F. & Ye, Xianming, 2025. "The effect of temperature on household hourly electricity consumption: Evidence from South Africa," Energy, Elsevier, vol. 319(C).
    6. Shi, Han & Wang, Bo & Qiu, Yueming Lucy & Deng, Nana & Xie, Baichen & Zhang, Bin & Ma, Shijun, 2024. "The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data," Energy Policy, Elsevier, vol. 190(C).
    7. Gongyi Zhang & Chang Zhang & Hongguang Nie, 2021. "An Overview of China’s Energy Labeling Policy Portfolio: China’s Contribution to Addressing the Global Goal of Sustainable Development," SAGE Open, , vol. 11(1), pages 21582440209, January.
    8. Huang, Jing & Echeverri, Dalia Patino & Zhang, Zhengfeng, 2024. "Planting trees is a cost-effective way to reduce residential electricity consumption and abate atmospheric CO2," Applied Energy, Elsevier, vol. 373(C).
    9. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
    10. Meixuan Teng & Hua Liao & Paul J. Burke & Tianqi Chen & Chen Zhang, 2022. "Adaptive responses: the effects of temperature levels on residential electricity use in China," Climatic Change, Springer, vol. 172(3), pages 1-20, June.
    11. Sun, Yefei & Hanemann, Michael, 2024. "Climate change adaptation in China: Differences in electricity consumption between rural and urban residents," Energy Economics, Elsevier, vol. 140(C).
    12. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    14. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    15. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    16. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    17. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    18. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2022. "Author Correction: Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    19. Jian Cui & Lunyu Xie & Xinye Zheng, 2023. "Climate change, air conditioning, and urbanization—evidence from daily household electricity consumption data in China," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    20. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Yñiguez, Rocío, 2017. "Global changes in residential energy consumption," Energy Policy, Elsevier, vol. 101(C), pages 342-352.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.