IDEAS home Printed from https://ideas.repec.org/p/zbw/cegedp/422.html

Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States

Author

Listed:
  • Berner, Anne
  • Bruns, Stephan B.
  • Moneta, Alessio
  • Stern, David I.

Abstract

Improving energy efficiency is often considered to be one of the keys to reducing greenhouse gas emissions. However, efficiency gains also reduce the cost of energy services and may even reduce the price of energy, resulting in energy use rebounding and potential energy use savings being eaten up. There is only limited empirical research quantifying the economy-wide rebound effect that takes the dynamic economic responses to energy efficiency improvements into account. We use a Structural Factor-Augmented Vector Autoregressive model (S-FAVAR) that allows us to track how energy use changes in response to an energy efficiency improvement while accounting for a vast range of potential confounders. Our findings point to economy-wide rebound effects of 78% to 101% after two years in France, Germany, Italy, the U.K., and the U.S. These findings imply that energy efficiency innovations alone may be of limited help in reducing future energy use and emphasize the importance of tackling carbon emissions directly.

Suggested Citation

  • Berner, Anne & Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," University of Göttingen Working Papers in Economics 422, University of Goettingen, Department of Economics.
  • Handle: RePEc:zbw:cegedp:422
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/234426/1/1759150088.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Do Energy Efficiency Improvements Reduce Energy Use? Empirical Evidence on the Economy-Wide Rebound Effect in Europe and the United States
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2021-06-03 04:36:00
    2. Annual Review 2021
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2021-12-30 06:11:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christou, Tryfonas & Lecca, Patrizio & Salotti, Simone, 2025. "Regional rebound effects of energy efficiency improvements in a spatial general equilibrium framework," Energy Economics, Elsevier, vol. 148(C).
    2. Liu, Yunqiang & Ye, Deping & Liu, Sha & Wang, Fang & Zeng, Hui & Tang, Hong, 2024. "Whether the agricultural energy rebound offsets the governance effectiveness of the China's natural resource audit policy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Tan, Ruipeng & Zhang, Zixuan & Du, Kerui & Lin, Boqiang, 2025. "Energy rebound effect in China: Measurement based on a variable coefficient production function," Ecological Economics, Elsevier, vol. 230(C).
    4. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    5. Massié, Camille & Belaïd, Fateh, 2024. "Estimating the direct rebound effect for residential electricity use in seventeen European countries: Short and long-run perspectives," Energy Economics, Elsevier, vol. 134(C).
    6. Pellegris, Alban & Court, Victor, 2025. "The rise and fall of neoliberalism: Evidences from an ecological and regulationist analysis of France (1960–2020)," Ecological Economics, Elsevier, vol. 230(C).
    7. Sun, Yefei & Hanemann, Michael, 2024. "Climate change adaptation in China: Differences in electricity consumption between rural and urban residents," Energy Economics, Elsevier, vol. 140(C).
    8. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    9. Deng, Yating & Zou, Yueqing & Guang, Fengtao, 2025. "Unveiling the energy efficiency paradox: Industrial automation and energy rebound in China," Energy, Elsevier, vol. 328(C).
    10. Han Xue & Meng Cai & Baoliu Liu & Kaisheng Di & Jin Hu, 2025. "Sustainable development through digital innovation: Unveiling the impact of big data comprehensive experimental zones on energy utilization efficiency," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(1), pages 177-189, February.
    11. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    12. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    13. Xiangyu Kong & Hong Li & Hongyuan Du, 2025. "The Environmental Impact of Unconventional Energy Technology Citations: A Network Analysis Perspective," Energies, MDPI, vol. 18(18), pages 1-32, September.
    14. Wang, Yongpei & Yan, Qing, 2023. "Is cleaner more efficient? Exploring nonlinear impacts of renewable energy deployment on regional total factor energy efficiency," Renewable Energy, Elsevier, vol. 216(C).
    15. Nieto, Jaime & Brockway, Paul E. & Sakai, Marco & Barrett, John, 2024. "Assessing the energy and socio-macroeconomic impacts of the EV transition: A UK case study 2020–2050," Applied Energy, Elsevier, vol. 370(C).
    16. Pavel Tsvetkov & Amina Andreichyk, 2025. "The Analysis of Goals, Results, and Trends in Global Climate Policy Through the Lens of Regulatory Documents and Macroeconomics," Sustainability, MDPI, vol. 17(10), pages 1-37, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cegedp:422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cdgoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.