IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021243.html
   My bibliography  Save this article

Unveiling the energy efficiency paradox: Industrial automation and energy rebound in China

Author

Listed:
  • Deng, Yating
  • Zou, Yueqing
  • Guang, Fengtao

Abstract

The swift advancement of industrial automation technology has led to behavioral alterations in the micro-units (individuals and firms) and then macro-units (countries and regions), inevitably shaping the energy rebound effect. Therefore, this study explores the impact of industrial automation on the energy rebound effect, which has not been extensively studied across China's various regions. Our results identify a significant positive effect of industrial automation on the energy rebound effect in China, with a 10 % advancement in industrial automation leading to a 0.44 % rise in the energy rebound effect. Besides, expediting market processes and reducing government intervention can mitigate such energy rebound effects. Moreover, a negative impact between industrial automation and the rebound effect is found in highly automated regions, while the positive effect of industrial automation on the rebound effect is pronounced in economically underdeveloped and resource-based regions. Furthermore, non-linear analysis reveals that industrial automation exerts an inverted U-shaped impact on the energy rebound effect, with 57.70 % of samples falling on the left side. These findings offer valuable insights for navigating the challenges posed by the energy efficiency paradox via industrial automation.

Suggested Citation

  • Deng, Yating & Zou, Yueqing & Guang, Fengtao, 2025. "Unveiling the energy efficiency paradox: Industrial automation and energy rebound in China," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021243
    DOI: 10.1016/j.energy.2025.136482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Berner, Anne & Bruns, Stephan & Moneta, Alessio & Stern, David I., 2022. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," Energy Economics, Elsevier, vol. 110(C).
    2. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
    3. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2022. "Quasi-Experimental Shift-Share Research Designs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 181-213.
    4. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    5. Cette, Gilbert & Devillard, Aurélien & Spiezia, Vincenzo, 2021. "The contribution of robots to productivity growth in 30 OECD countries over 1975–2019," Economics Letters, Elsevier, vol. 200(C).
    6. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    7. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    8. Chen, Qian & Zha, Donglan & Salman, Muhammad, 2022. "The influence of carbon tax on CO2 rebound effect and welfare in Chinese households," Energy Policy, Elsevier, vol. 168(C).
    9. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    10. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    11. Huzhou Zhu & Bin Sang & Chunyuan Zhang & Lin Guo, 2023. "Have Industrial Robots Improved Pollution Reduction? A Theoretical Approach and Empirical Analysis," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 31(4), pages 153-172, July.
    12. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    13. Mona Chitnis & Roger Fouquet & Steve Sorrell, 2020. "Rebound Effects for Household Energy Services in the UK," The Energy Journal, , vol. 41(4), pages 31-60, July.
    14. Thanh Quang Phung & Ehsan Rasoulinezhad & Hang Luong Thi Thu, 2023. "How are FDI and green recovery related in Southeast Asian economies?," Economic Change and Restructuring, Springer, vol. 56(6), pages 3735-3755, December.
    15. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    16. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    17. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    18. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
    19. Sun, Chuanwang & Chen, Zhilong & Guo, Zhiru & Wu, Huixin, 2022. "Energy rebound effect of various industries in China: Based on hybrid energy input-output model," Energy, Elsevier, vol. 261(PB).
    20. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
    21. Shi, Jian-hua & Han, Ying & Li, Xue-dong & Zhou, Jie-qi, 2022. "How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China," Energy, Elsevier, vol. 239(PE).
    22. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    23. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    24. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    25. Kerui Du, Shuai Shao, and Zheming Yan, 2021. "Urban Residential Energy Demand and Rebound Effect in China: A Stochastic Energy Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    26. Aksoy, Cevat Giray & Özcan, Berkay & Philipp, Julia, 2021. "Robots and the gender pay gap in Europe," European Economic Review, Elsevier, vol. 134(C).
    27. Yaya Li & Yuru Zhang & An Pan & Minchun Han & Eleonora Veglianti, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Post-Print hal-04522085, HAL.
    28. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    29. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    30. Gan, Jiawu & Liu, Lihua & Qiao, Gang & Zhang, Qin, 2023. "The role of robot adoption in green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    31. Berner, Anne & Lange, Steffen & Silbersdorff, Alexander, 2022. "Firm-level energy rebound effects and relative efficiency in the German manufacturing sector," Energy Economics, Elsevier, vol. 109(C).
    32. Tao, Weiliang & Weng, Shimei & Chen, Xueli & ALHussan, Fawaz Baddar & Song, Malin, 2024. "Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    33. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    34. Zimmermann, Michel & Vöhringer, Frank & Thalmann, Philippe & Moreau, Vincent, 2021. "Do rebound effects matter for Switzerland? Assessing the effectiveness of industrial energy efficiency improvements," Energy Economics, Elsevier, vol. 104(C).
    35. Harry D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, , vol. 13(4), pages 131-148, October.
    36. Stemmler, Henry, 2023. "Automated Deindustrialization: How Global Robotization Affects Emerging Economies—Evidence from Brazil," World Development, Elsevier, vol. 171(C).
    37. Li, Jianglong & Liu, Hongxun & Du, Kerui, 2019. "Does market-oriented reform increase energy rebound effect? Evidence from China's regional development," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    38. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    39. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    40. Shen, Yu & Sun, Wenkai, 2023. "The effect of low-carbon city pilot on energy consumption behavior: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    41. Welsch, Heinz & Ochsen, Carsten, 2005. "The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade," Energy Economics, Elsevier, vol. 27(1), pages 93-111, January.
    42. Huang, Geng & He, Ling-Yun & Lin, Xi, 2022. "Robot adoption and energy performance: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 107(C).
    43. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    44. Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
    45. Li, Chengyu & Wang, Qunwei & Zhou, Peng, 2023. "Does the “resource curse” have a spatial spillover effect? Evidence from China," Resources Policy, Elsevier, vol. 81(C).
    46. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    47. Galvin, Ray, 2015. "The rebound effect, gender and social justice: A case study in Germany," Energy Policy, Elsevier, vol. 86(C), pages 759-769.
    48. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    49. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    50. Ebeke, Christian H. & Eklou, Kodjovi M., 2023. "Automation and the employment elasticity of fiscal policy," Journal of Macroeconomics, Elsevier, vol. 75(C).
    51. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    52. Lin, Boqiang & Du, Kerui, 2015. "Measuring energy rebound effect in the Chinese economy: An economic accounting approach," Energy Economics, Elsevier, vol. 50(C), pages 96-104.
    53. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    54. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    55. Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
    56. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    57. Frondel, Manuel, 2011. "Modelling energy and non-energy substitution: A brief survey of elasticities," Energy Policy, Elsevier, vol. 39(8), pages 4601-4604, August.
    58. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    59. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    60. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    61. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    62. Schmidpeter, Bernhard & Winter-Ebmer, Rudolf, 2021. "Automation, unemployment, and the role of labor market training," European Economic Review, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    2. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Huang, Chenchen & Lin, Boqiang, 2025. "The impact of digital economy on energy rebound effect in China: A stochastic energy demand frontier approach," Energy Policy, Elsevier, vol. 196(C).
    4. Tan, Ruipeng & Zhang, Zixuan & Du, Kerui & Lin, Boqiang, 2025. "Energy rebound effect in China: Measurement based on a variable coefficient production function," Ecological Economics, Elsevier, vol. 230(C).
    5. Lee, Chien-Chiang & Xuan, Chengnan & Wang, Fuhao, 2024. "Natural resources and green economic growth: The role of artificial intelligence," Resources Policy, Elsevier, vol. 98(C).
    6. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    7. Niu, Xiaotong & Lin, Changao & He, Shanshan & Yang, Youcai, 2025. "Artificial intelligence and enterprise pollution emissions: From the perspective of energy transition," Energy Economics, Elsevier, vol. 144(C).
    8. Tufan Özsoy, 2024. "The “energy rebound effect” within the framework of environmental sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    9. Liu, Yunqiang & Ye, Deping & Liu, Sha & Wang, Fang & Zeng, Hui & Tang, Hong, 2024. "Whether the agricultural energy rebound offsets the governance effectiveness of the China's natural resource audit policy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Schneider, Florian, 2024. "Do robots boost productivity? A quantitative meta-study," MPRA Paper 123392, University Library of Munich, Germany.
    11. Long, Guoren & Duan, Dingyun & Wang, Hua & Chen, Shaojian, 2024. "The impact of industrial robots on low-carbon green performance: Evidence from the belt and road initiative countries," Technology in Society, Elsevier, vol. 79(C).
    12. Han, Wang-Zhe & Zhang, Yi-Ming, 2024. "Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development," Innovation and Green Development, Elsevier, vol. 3(3).
    13. Li, Daiyue & Jin, Yanhong & Cheng, Mingwang, 2024. "Unleashing the power of industrial robotics on firm productivity: Evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 500-520.
    14. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    15. Kong, Li & Mu, Xianzhong & Hu, Guangwen & Tu, Chuang, 2023. "Will energy efficiency improvements reduce energy consumption? Perspective of rebound effect and evidence from beijing," Energy, Elsevier, vol. 263(PA).
    16. Zhou, Huilin & Wang, Linhui & Cao, Yutong & Li, Jincheng, 2025. "The impact of artificial intelligence on labor market: A study based on bibliometric analysis," Journal of Asian Economics, Elsevier, vol. 98(C).
    17. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    18. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    19. Hui Tian & Jiaqi Qin & Chaoyin Cheng & Sohail Ahmad Javeed & Tiansi Chu, 2024. "Towards low‐carbon sustainable development under Industry 4.0: The influence of industrial intelligence on China's carbon mitigation," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 455-480, February.
    20. Dai, Hangrui & Yang, Ronghai & Cao, Rongguang & Yin, Lei, 2024. "Does the application of industrial robots promote export green transformation? Evidence from Chinese manufacturing enterprises," International Review of Economics & Finance, Elsevier, vol. 96(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.