IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221024452.html
   My bibliography  Save this article

Regional energy diversity and sovereignty in different 2 °C and 1.5 °C pathways

Author

Listed:
  • Hof, A.F.
  • Esmeijer, K.
  • de Boer, H.S.
  • Daioglou, V.
  • Doelman, J.C.
  • Elzen, M.G.J. den
  • Gernaat, D.E.H.J.
  • van Vuuren, D.P.

Abstract

Achieving the objectives of the Paris Climate Agreement requires a fast transition of the energy system. This leads to consequences for energy security, which a central element of the energy strategy of many countries. Important dimensions of energy security are energy diversity and energy sovereignty. The main objective of this study is to assess how different strategies and climate objectives affect these dimensions. For this, we developed a set of model-based mitigation scenarios that limit global warming to below 2 °C and 1.5 °C for 16 world regions. The scenarios differ in the energy transition strategy, focusing either more on intermittent renewables or lifestyle change. We show that energy supply diversity increases in deep mitigation scenarios in practically all regions, especially in India and China. This is due to strong growth of bioenergy and intermittent renewables, together with less fossil fuel use. There is also a substantial decrease in total energy trade in mitigation scenarios with a strong focus on intermittent renewables. Without such a strong focus on renewables, the decrease in oil and coal trade is offset by additional trade in bioenergy. However, more trade in bioenergy leads to a higher diversity in energy exporters.

Suggested Citation

  • Hof, A.F. & Esmeijer, K. & de Boer, H.S. & Daioglou, V. & Doelman, J.C. & Elzen, M.G.J. den & Gernaat, D.E.H.J. & van Vuuren, D.P., 2022. "Regional energy diversity and sovereignty in different 2 °C and 1.5 °C pathways," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024452
    DOI: 10.1016/j.energy.2021.122197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    3. Gunnar Luderer & Robert C. Pietzcker & Samuel Carrara & Harmen-Sytze de Boer & Shinichiro Fujimori & Nils Johnson & Silvana Mima & Douglas Arent, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Post-Print hal-01515408, HAL.
    4. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    5. Vassilis Daioglou & Matteo Muratori & Patrick Lamers & Shinichiro Fujimori & Alban Kitous & Alexandre C. Köberle & Nico Bauer & Martin Junginger & Etsushi Kato & Florian Leblanc & Silvana Mima & Marsh, 2020. "Implications of climate change mitigation strategies on international bioenergy trade," Climatic Change, Springer, vol. 163(3), pages 1639-1658, December.
    6. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    7. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    8. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    9. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
    10. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. van Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Lebla, 2018. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Post-Print hal-01972038, HAL.
    11. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    12. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    13. Vassilis Daioglou & Matteo Muratori & Patrick Lamers & Shinichiro Fujimori & Alban Kitous & Alexandre Köberle & Nico Bauer & Martin Junginger & Etsushi Kato & Florian Leblanc & Silvana Mima & Marshal , 2020. "Implications of climate change mitigation strategies on international bioenergy trade," Post-Print hal-03133038, HAL.
    14. Detlef P. van Vuuren & Andries F. Hof & Mariësse A. E. van Sluisveld & Keywan Riahi, 2017. "Open discussion of negative emissions is urgently needed," Nature Energy, Nature, vol. 2(12), pages 902-904, December.
    15. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    16. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    17. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    18. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    2. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-29, June.
    3. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    3. Piotr Kosowski & Katarzyna Kosowska, 2021. "Valuation of Energy Security for Natural Gas—European Example," Energies, MDPI, vol. 14(9), pages 1-19, May.
    4. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    5. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    6. Stempien, J.P. & Chan, S.H., 2017. "Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory," Applied Energy, Elsevier, vol. 202(C), pages 228-237.
    7. Kosai, Shoki & Unesaki, Hironobu, 2020. "Short-term vs long-term reliance: Development of a novel approach for diversity of fuels for electricity in energy security," Applied Energy, Elsevier, vol. 262(C).
    8. Valdés Lucas, Javier Noel & Escribano Francés, Gonzalo & San Martín González, Enrique, 2016. "Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1032-1046.
    9. Elena Vechkinzova & Yelena Petrenko & Yana S. Matkovskaya & Gaukhar Koshebayeva, 2021. "The Dilemma of Long-Term Development of the Electric Power Industry in Kazakhstan," Energies, MDPI, vol. 14(9), pages 1-21, April.
    10. Gupta, Kuhika & Nowlin, Matthew C. & Ripberger, Joseph T. & Jenkins-Smith, Hank C. & Silva, Carol L., 2019. "Tracking the nuclear ‘mood’ in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data," Energy Policy, Elsevier, vol. 133(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    13. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    14. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    16. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    17. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens, 2023. "The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    18. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    19. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    20. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.