IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007131.html
   My bibliography  Save this article

Enabling energy system transition toward decarbonization in Japan through energy service demand reduction

Author

Listed:
  • Oshiro, Ken
  • Fujimori, Shinichiro
  • Ochi, Yuki
  • Ehara, Tomoki

Abstract

Japan’s mid-century strategy for reducing greenhouse gas emissions by 80% in 2050 would require large-scale energy system transformation and associated increases in mitigation costs. Nevertheless, the role of energy demand reduction, especially reductions related to energy services such as behavioral changes and material use efficiency improvements, have not been sufficiently evaluated. This study aims to identify key challenges and opportunities of the decarbonization goal when considering the role of energy service demand reduction. To this end, we used a detailed bottom-up energy system model in conjunction with an energy service demand model to explore energy system changes and their cost implications. The results indicate that final energy demand in 2050 can be cut by 37% relative to the no-policy case through energy service demand reduction measures. Although the lack of carbon capture and storage would cause mitigation costs to double or more, these economic impacts can be offset by energy service demand reduction. Among energy demand sectors, the impact of industrial service demand reduction is largest, as it contributes to reducing residual emissions from the industry sector. These findings highlight the importance of energy service demand reduction measures for meeting national climate goals in addition to technological options.

Suggested Citation

  • Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007131
    DOI: 10.1016/j.energy.2021.120464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ken Oshiro & Mikiko Kainuma & Toshihiko Masui, 2016. "Assessing decarbonization pathways and their implications for energy security policies in Japan," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 63-77, June.
    2. Gunnar Luderer & Robert C. Pietzcker & Samuel Carrara & Harmen-Sytze de Boer & Shinichiro Fujimori & Nils Johnson & Silvana Mima & Douglas Arent, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Post-Print hal-01515408, HAL.
    3. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    4. Diego Silva Herran & Shinichiro Fujimori & Mikiko Kainuma, 2019. "Implications of Japan’s long term climate mitigation target and the relevance of uncertain nuclear policy," Climate Policy, Taylor & Francis Journals, vol. 19(9), pages 1117-1131, October.
    5. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
    6. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    7. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    8. R. Schaeffer & A. Köberle & H. L. Soest & C. Bertram & G. Luderer & K. Riahi & V. Krey & D. P. Vuuren & E. Kriegler & S. Fujimori & W. Chen & C. He & Z. Vrontisi & S. Vishwanathan & A. Garg & R. Mathu, 2020. "Comparing transformation pathways across major economies," Climatic Change, Springer, vol. 162(4), pages 1787-1803, October.
    9. Homma, Takashi & Akimoto, Keigo, 2013. "Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident," Energy Policy, Elsevier, vol. 62(C), pages 1216-1225.
    10. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    11. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    12. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    13. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    14. Sergey Paltsev & Pantelis Capros, 2013. "Cost Concepts For Climate Change Mitigation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    15. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    16. Junichi Fujino & Go Hibino & Tomoki Ehara & Yuzuru Matsuoka & Toshihiko Masui & Mikiko Kainuma, 2008. "Back-casting analysis for 70% emission reduction in Japan by 2050," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 108-124, December.
    17. Oshiro, Ken & Masui, Toshihiko, 2015. "Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan," Energy Policy, Elsevier, vol. 81(C), pages 215-225.
    18. Akashi, Osamu & Hanaoka, Tatsuya & Matsuoka, Yuzuru & Kainuma, Mikiko, 2011. "A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes," Energy, Elsevier, vol. 36(4), pages 1855-1867.
    19. Shinichiro Fujimori & Ken Oshiro & Hiroto Shiraki & Tomoko Hasegawa, 2019. "Energy transformation cost for the Japanese mid-century strategy," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    20. van Sluisveld, Mariësse A.E. & Martínez, Sara Herreras & Daioglou, Vassilis & van Vuuren, Detlef P., 2016. "Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 309-319.
    21. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    22. Oshiro, Ken & Kainuma, Mikiko & Masui, Toshihiko, 2017. "Implications of Japan's 2030 target for long-term low emission pathways," Energy Policy, Elsevier, vol. 110(C), pages 581-587.
    23. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    24. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    3. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    4. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    5. Ju, Yiyi & Sugiyama, Masahiro & Kato, Etsushi & Oshiro, Ken & Wang, Jiayang, 2022. "Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models," Applied Energy, Elsevier, vol. 318(C).
    6. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    7. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    8. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    9. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    2. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    3. Fragkos, Panagiotis & Fragkiadakis, Kostas & Paroussos, Leonidas & Pierfederici, Roberta & Vishwanathan, Saritha S. & Köberle, Alexandre C. & Iyer, Gokul & He, Chen-Min & Oshiro, Ken, 2018. "Coupling national and global models to explore policy impacts of NDCs," Energy Policy, Elsevier, vol. 118(C), pages 462-473.
    4. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    5. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    6. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    7. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    8. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    9. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    10. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Oshiro, Ken & Masui, Toshihiko, 2015. "Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan," Energy Policy, Elsevier, vol. 81(C), pages 215-225.
    12. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.
    13. Oshiro, Ken & Kainuma, Mikiko & Masui, Toshihiko, 2017. "Implications of Japan's 2030 target for long-term low emission pathways," Energy Policy, Elsevier, vol. 110(C), pages 581-587.
    14. Chaube, Anshuman & Chapman, Andrew & Minami, Akari & Stubbins, James & Huff, Kathryn D., 2021. "The role of current and emerging technologies in meeting Japan’s mid- to long-term carbon reduction goals," Applied Energy, Elsevier, vol. 304(C).
    15. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    16. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    17. Hiroto Shiraki & Masahiro Sugiyama, 2020. "Back to the basic: toward improvement of technoeconomic representation in integrated assessment models," Climatic Change, Springer, vol. 162(1), pages 13-24, September.
    18. Hof, A.F. & Esmeijer, K. & de Boer, H.S. & Daioglou, V. & Doelman, J.C. & Elzen, M.G.J. den & Gernaat, D.E.H.J. & van Vuuren, D.P., 2022. "Regional energy diversity and sovereignty in different 2 °C and 1.5 °C pathways," Energy, Elsevier, vol. 239(PB).
    19. Edelenbosch, O.Y. & van Vuuren, D.P. & Blok, K. & Calvin, K. & Fujimori, S., 2020. "Mitigating energy demand sector emissions: The integrated modelling perspective," Applied Energy, Elsevier, vol. 261(C).
    20. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.