IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics0306261922010285.html
   My bibliography  Save this article

The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China

Author

Listed:
  • Lei, Mingyu
  • Ding, Qun
  • Cai, Wenjia
  • Wang, Can

Abstract

The design of “fairness” and “justice” climate policies for controlling indirect household carbon emissions (IHCEs) requires joint efforts from the demand side and supply side. On the demand side, this study constructs behavior-specific IHCEs inventory for different household groups (differed by income level) in different regions to identify high-emitting households and corresponding high-emitting consumption behaviors. On the supply side, the “Carbon Account” is set up for different regions regarding various household consumption behaviors to screen all potential emitting-related stakeholders in the entire demand–supply chains. Using 25 Chinese provinces as study cases, the findings indicate that carbon inequalities across household groups are greater than income inequalities in poorer provinces, whereas the opposite is true in richer provinces. For most high emitting households (most were middle-high- and high-income households) in 25 provinces, Food & Beverage, Housing, and Durable goods are the top 3 carbon-intensive consumption behaviors, together accounting for 64–81% (72% on average) of total IHCEs. For the three carbon-intensive behaviors, the province-level carbon account analysis shows that a province's self-production emissions (local consumption, local emissions) took up an average of 52%, 70%, and 47% of its carbon accounts. An average of 83%, 80%, and 79% of net carbon transfer-in of a province (non-local consumption, local emissions) sourced from its 5 major consuming provinces, while 76%, 81%, and 77% of transfer-out (local consumption, non-local emissions) of a province were outsourced to its 5 major producing provinces, respectively. Furthermore, according to the sector-level carbon accounts, an average of 75%, 89%, and 76% of the sector carbon transfer-in, and an average of 72%, 80%, and 79% of the sector carbon transfer-out of a province were emitted by three dominant local or non-local industrial sectors, respectively. This study could provide policy implications for local governments to take joint climate mitigation strategies between the demand-side and supply-side targeting high-emitting household consumption behaviors.

Suggested Citation

  • Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010285
    DOI: 10.1016/j.apenergy.2022.119740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:judgdm:v:12:y:2017:i:3:p:314-327 is not listed on IDEAS
    2. Adrian R. Camilleri & Richard P. Larrick & Shajuti Hossain & Dalia Patino-Echeverri, 2019. "Consumers underestimate the emissions associated with food but are aided by labels," Nature Climate Change, Nature, vol. 9(1), pages 53-58, January.
    3. Ana Serrano & Dabo Guan & Rosa Duarte & Jouni Paavola, 2016. "Virtual Water Flows in the EU27: A Consumption-based Approach," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 547-558, June.
    4. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    5. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    6. Gokul Iyer, 2019. "A decent life," Nature Energy, Nature, vol. 4(12), pages 1010-1011, December.
    7. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    8. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Publisher Correction: Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(4), pages 349-349, April.
    9. John R. Posey, 2021. "The geographic redistribution of income in the United States, 1970–2010: the role of the super-wealthy," Letters in Spatial and Resource Sciences, Springer, vol. 14(3), pages 321-333, December.
    10. Shinichiro Fujimori & Volker Krey & Detlef Vuuren & Ken Oshiro & Masahiro Sugiyama & Puttipong Chunark & Bundit Limmeechokchai & Shivika Mittal & Osamu Nishiura & Chan Park & Salony Rajbhandari & Dieg, 2021. "A framework for national scenarios with varying emission reductions," Nature Climate Change, Nature, vol. 11(6), pages 472-480, June.
    11. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    12. Julia K. Steinberger & J. Timmons Roberts & Glen P. Peters & Giovanni Baiocchi, 2012. "Pathways of human development and carbon emissions embodied in trade," Nature Climate Change, Nature, vol. 2(2), pages 81-85, February.
    13. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    14. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(3), pages 231-239, March.
    15. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    16. Dominik Wiedenhofer & Dabo Guan & Zhu Liu & Jing Meng & Ning Zhang & Yi-Ming Wei, 2017. "Unequal household carbon footprints in China," Nature Climate Change, Nature, vol. 7(1), pages 75-80, January.
    17. Catherine Cherry & Kate Scott & John Barrett & Nick Pidgeon, 2018. "Public acceptance of resource-efficiency strategies to mitigate climate change," Nature Climate Change, Nature, vol. 8(11), pages 1007-1012, November.
    18. Luis-Antonio López & María-Ángeles Cadarso & Jorge Zafrilla & Guadalupe Arce, 2019. "The carbon footprint of the U.S. multinationals’ foreign affiliates," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    19. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    20. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    21. Klaus Hubacek & Giovanni Baiocchi & Kuishuang Feng & Anand Patwardhan, 2017. "Poverty eradication in a carbon constrained world," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    22. Cohen, Mark A. & Vandenbergh, Michael P., 2012. "The potential role of carbon labeling in a green economy," Energy Economics, Elsevier, vol. 34(S1), pages 53-63.
    23. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    24. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    25. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    26. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    27. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    28. Narasimha D. Rao & Jihoon Min & Alessio Mastrucci, 2019. "Energy requirements for decent living in India, Brazil and South Africa," Nature Energy, Nature, vol. 4(12), pages 1025-1032, December.
    29. Diana Ivanova & Konstantin Stadler & Kjartan Steen-Olsen & Richard Wood & Gibran Vita & Arnold Tukker & Edgar G. Hertwich, 2016. "Environmental Impact Assessment of Household Consumption," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 526-536, June.
    30. Alina Herrmann & Helen Fischer & Dorothee Amelung & Dorian Litvine & Carlo Aall & Camilla Andersson & Marta Baltruszewicz & Carine Barbier & Sebastien Bruyere & Françoise Bénévise & Ghislain Dubois & , 2018. "Household preferences for reducing greenhouse gas emissions in four European high-income countries: Does health information matter? A mixed-methods study protocol," Post-Print hal-01693772, HAL.
    31. Narasimha D. Rao & Jihoon Min, 2018. "Decent Living Standards: Material Prerequisites for Human Wellbeing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 225-244, July.
    32. Li, Xi & Ouyang, Zhigang & Zhang, Qiong & Shang, Wen-long & Huang, Liqiao & Wu, Yi & Gao, Yuning, 2022. "Evaluating food supply chain emissions from Japanese household consumption," Applied Energy, Elsevier, vol. 306(PB).
    33. Tarun M. Khanna & Giovanni Baiocchi & Max Callaghan & Felix Creutzig & Horia Guias & Neal R. Haddaway & Lion Hirth & Aneeque Javaid & Nicolas Koch & Sonja Laukemper & Andreas Löschel & Maria del Mar Z, 2021. "A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings," Nature Energy, Nature, vol. 6(9), pages 925-932, September.
    34. Jing Meng & Zhifu Mi & Dabo Guan & Jiashuo Li & Shu Tao & Yuan Li & Kuishuang Feng & Junfeng Liu & Zhu Liu & Xuejun Wang & Qiang Zhang & Steven J. Davis, 2018. "The rise of South–South trade and its effect on global CO2 emissions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    35. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    2. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    3. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    4. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    5. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    6. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    7. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    8. Jingwen Huo & Jing Meng & Heran Zheng & Priti Parikh & Dabo Guan, 2023. "Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    10. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    11. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    12. Xie, Jun & Zhou, Shaojie & Teng, Fei & Gu, Alun, 2023. "The characteristics and driving factors of household CO2 and non-CO2 emissions in China," Ecological Economics, Elsevier, vol. 213(C).
    13. Okushima, Shinichiro, 2021. "Energy poor need more energy, but do they need more carbon? Evaluation of people's basic carbon needs," Ecological Economics, Elsevier, vol. 187(C).
    14. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    15. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    16. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    17. Guo, Shan & Li, Yilin & He, Ping & Chen, Haosong & Meng, Jing, 2021. "Embodied energy use of China's megacities: A comparative study of Beijing and Shanghai," Energy Policy, Elsevier, vol. 155(C).
    18. Baltruszewicz, Marta & Steinberger, Julia K. & Paavola, Jouni & Ivanova, Diana & Brand-Correa, Lina I. & Owen, Anne, 2023. "Social outcomes of energy use in the United Kingdom: Household energy footprints and their links to well-being," Ecological Economics, Elsevier, vol. 205(C).
    19. Ying Pan & Ke Shi & Zhongxu Zhao & Yao Li & Junxi Wu, 2024. "The effects of China’s poverty eradication program on sustainability and inequality," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    20. Meng, Weilu & Yuan, Gecheng & Sun, Yongping, 2023. "Expansion of social networks and household carbon emissions: Evidence from household survey in China," Energy Policy, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.