IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5017-d615105.html
   My bibliography  Save this article

Assessment of Hybrid Solvent—Membrane Configurations for Post-Combustion CO 2 Capture for Super-Critical Power Plants

Author

Listed:
  • Calin-Cristian Cormos

    (Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, RO-400028 Cluj-Napoca, Romania)

  • Letitia Petrescu

    (Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, RO-400028 Cluj-Napoca, Romania)

  • Ana-Maria Cormos

    (Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, RO-400028 Cluj-Napoca, Romania)

  • Cristian Dinca

    (Faculty of Power Engineering, Politehnica University, 313 Splaiul Independentei, RO-060042 Bucharest, Romania)

Abstract

The reduction of fossil CO 2 emissions from key relevant industrial processes represents an important environmental challenge to be considered. To enable large-scale deployment of low carbon technologies, a significant research and development effort is required to optimize the CO 2 capture systems. This work assesses various hybrid solvent-membrane configurations for post-combustion decarbonization of coal-based super-critical power plants. As an illustrative chemical solvent, Methyl-Di-Ethanol-Amine was assessed. Various membrane unit locations were assessed (e.g., top absorber, before absorber using either compressor or vacuum pump). All investigated designs have a 1000 MW net power output with a 90% decarbonization ratio. Benchmark concepts with and without carbon capture using either reactive gas-liquid absorption or membrane separation technology were also evaluated to have a comparative assessment. Relevant evaluation tools (e.g., modeling, simulation, validation, thermal integration, etc.) were employed to assess the plant performance indicators. The integrated evaluation shows that one hybrid solvent-membrane configuration (membrane unit located at the top of absorption column) performs better in terms of increasing the overall net plant efficiency than the membrane-only case (by about 1.8 net percentage points). In addition, the purity of captured CO 2 stream is higher for hybrid concepts than for membranes (99.9% vs. 96.3%). On the other hand, the chemical scrubbing concept has superior net energy efficiency than investigated hybrid configurations (by about 1.5–3.7 net percentage points).

Suggested Citation

  • Calin-Cristian Cormos & Letitia Petrescu & Ana-Maria Cormos & Cristian Dinca, 2021. "Assessment of Hybrid Solvent—Membrane Configurations for Post-Combustion CO 2 Capture for Super-Critical Power Plants," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5017-:d:615105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. Cristea, Vasile-Mircea & Burca, Madalina Ioana & Ilea, Flavia Maria & Cormos, Ana-Maria, 2020. "Efficient decentralized control of the post combustion CO2 capture plant for flexible operation against influent flue gas disturbances," Energy, Elsevier, vol. 205(C).
    4. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    5. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    2. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    3. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    4. Maytham Alabid & Cristian Dinca, 2022. "Parametrization Study for Optimal Pre-Combustion Integration of Membrane Processes in BIGCC," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    7. Cormos, Ana-Maria & Petrescu, Letitia & Cormos, Calin-Cristian, 2023. "Techno-economic implications of time-flexible operation for iron-based chemical looping combustion cycle with energy storage capability," Energy, Elsevier, vol. 278(C).
    8. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    9. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    10. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    12. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    13. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    14. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    16. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    17. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    18. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    19. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    20. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5017-:d:615105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.