IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1505-d513702.html
   My bibliography  Save this article

Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference

Author

Listed:
  • Masako Numata

    (Institute for Future Initiatives, The University of Tokyo, Tokyo 113-0033, Japan)

  • Masahiro Sugiyama

    (Institute for Future Initiatives, The University of Tokyo, Tokyo 113-0033, Japan)

  • Wunna Swe

    (Department of Electrical Power Engineering, Mandalay Technological University, Mandalay 05072, Myanmar)

  • Daniel del Barrio Alvarez

    (Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan)

Abstract

The increased use of renewable energy is imperative as a countermeasure to climate change. As with conventional electricity generation technologies, public acceptance of renewables is an important issue, and willingness to pay (WTP) is a widely used indicator to assess such public attitudes. Unfortunately, the literature to date mostly covers developed countries, with few WTP surveys in developing countries. Tackling climate change is an urgent issue for these developing countries; therefore, understanding of public attitudes toward renewables in developing countries is crucial. This study conducted the first survey on WTP for introducing renewable energy in Myanmar. Although Myanmar boasts abundant renewable energy resources, including solar power and biomass in addition to large-scale hydro plants, its resources are not being properly utilized to generate electricity. This study surveyed WTP for power generation by solar photovoltaics, small hydropower, and biomass facilities. The results showed the highest WTP for solar power (USD 1.92) with 10% share in the energy mix, and lower WTP for biomass and small hydropower electricity generations (USD 1.13 and USD 1.17, respectively). Careful public communication is thus crucial for expanding biomass and small-scale hydro power plants.

Suggested Citation

  • Masako Numata & Masahiro Sugiyama & Wunna Swe & Daniel del Barrio Alvarez, 2021. "Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference," Energies, MDPI, vol. 14(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1505-:d:513702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    2. Esther Bekker-Grob & Bas Donkers & Marcel Jonker & Elly Stolk, 2015. "Sample Size Requirements for Discrete-Choice Experiments in Healthcare: a Practical Guide," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 8(5), pages 373-384, October.
    3. Masako Numata & Masahiro Sugiyama & Gento Mogi, 2020. "Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP)," Energies, MDPI, vol. 13(6), pages 1-16, March.
    4. Bigerna, Simona & Polinori, Paolo, 2014. "Italian households׳ willingness to pay for green electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 110-121.
    5. Li, Hui & Berrens, Robert P. & Bohara, Alok K. & Jenkins-Smith, Hank C. & Silva, Carol L. & Weimer, David L., 2004. "Would developing country commitments affect US households' support for a modified Kyoto Protocol?," Ecological Economics, Elsevier, vol. 48(3), pages 329-343, March.
    6. Kunaifi & Angèle Reinders, 2018. "Perceived and Reported Reliability of the Electricity Supply at Three Urban Locations in Indonesia," Energies, MDPI, vol. 11(1), pages 1-27, January.
    7. Roy, Joyashree & Jana, Sebak, 1998. "Solar lanterns for rural households," Energy, Elsevier, vol. 23(1), pages 67-68.
    8. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    9. Ghosh, Ranjan & Goyal, Yugank & Rommel, Jens & Sagebiel, Julian, 2017. "Are small firms willing to pay for improved power supply? Evidence from a contingent valuation study in India," Energy Policy, Elsevier, vol. 109(C), pages 659-665.
    10. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    12. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    13. Florian Fizaine & Pierre Voye & Catherine Baumont, 2018. "Does the Literature Support a High Willingness to Pay for Green Label Buildings? An Answer with Treatment of Publication Bias," Revue d'économie politique, Dalloz, vol. 128(5), pages 1013-1046.
    14. Berrens, Robert P. & Bohara, Alok K. & Jenkins-Smith, Hank C. & Silva, Carol L. & Weimer, David L., 2004. "Information and effort in contingent valuation surveys: application to global climate change using national internet samples," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 331-363, March.
    15. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
    16. Khan, Hassan Abbas & Ahmad, Husnain Fateh & Nasir, Mashood & Nadeem, Muhammad Fatiq & Zaffar, Nauman Ahmed, 2018. "Decentralised electric power delivery for rural electrification in Pakistan," Energy Policy, Elsevier, vol. 120(C), pages 312-323.
    17. Bose, Ranjan Kumar & Shukla, Megha, 2001. "Electricity tariffs in India: an assessment of consumers' ability and willingness to pay in Gujarat," Energy Policy, Elsevier, vol. 29(6), pages 465-478, May.
    18. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
    19. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    20. Han, Myat Su & Biying, Yu & Cudjoe, Dan & Yuan, Qianqian, 2020. "Investigating willingness-to-pay to support solar energy research and development in Myanmar," Energy Policy, Elsevier, vol. 146(C).
    21. D’Agostino, Anthony L. & Sovacool, Benjamin K. & Bambawale, Malavika Jain, 2011. "And then what happened? A retrospective appraisal of China’s Renewable Energy Development Project (REDP)," Renewable Energy, Elsevier, vol. 36(11), pages 3154-3165.
    22. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    23. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    24. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    25. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    26. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    27. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    28. Zhu, Lichao & Song, Qingbin & Sheng, Ni & Zhou, Xiu, 2019. "Exploring the determinants of consumers’ WTB and WTP for electric motorcycles using CVM method in Macau," Energy Policy, Elsevier, vol. 127(C), pages 64-72.
    29. Sagebiel, Julian & Müller, Jakob R. & Rommel, Jens, 2013. "Are Consumers Willing to Pay More for Electricity from Cooperatives? Results from an Online Choice Experiment in Germany," MPRA Paper 52385, University Library of Munich, Germany.
    30. Nam, Kee-Yung & Cham, Maria Rowena & Halili, Paulo Rodelio, 2015. "Power Sector Development in Myanmar," ADB Economics Working Paper Series 460, Asian Development Bank.
    31. International Finance Corporation, 2018. "Strategic Environmental Assessment of the Myanmar Hydropower Sector," World Bank Publications - Reports 31256, The World Bank Group.
    32. Guo, Xiurui & Liu, Haifeng & Mao, Xianqiang & Jin, Jianjun & Chen, Dongsheng & Cheng, Shuiyuan, 2014. "Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China," Energy Policy, Elsevier, vol. 68(C), pages 340-347.
    33. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Georgia K. Roberts & Dominique J. Pride & Joseph M. Little & Julie M. Mueller, 2023. "Willingness to Pay for Renewably-Sourced Home Heating in the Fairbanks North Star Borough," Energies, MDPI, vol. 16(8), pages 1-14, April.
    3. Azlina, A. A. & Abu Bakar, Shahida & Kamaludin, Mahirah & Ghani, Awang Noor, 2022. "Willingness to Pay for Renewable Energy: Evidence From High Wind and Wave Energy Potential Areas," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 59-70.
    4. Rui Zhou & Hiroatsu Fukuda & You Li & Yafei Wang, 2023. "Comparison of Willingness to Pay for Quality Air and Renewable Energy Considering Urban Living Experience," Energies, MDPI, vol. 16(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    2. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    3. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    4. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).
    5. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    6. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    7. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    8. Dastan Bamwesigye, 2023. "Willingness to Pay for Alternative Energies in Uganda: Energy Needs and Policy Instruments towards Zero Deforestation 2030 and Climate Change," Energies, MDPI, vol. 16(2), pages 1-21, January.
    9. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    10. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    11. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    12. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Cheng, Y.S. & Cao, K.H. & Woo, C.K. & Yatchew, A., 2017. "Residential willingness to pay for deep decarbonization of electricity supply: Contingent valuation evidence from Hong Kong," Energy Policy, Elsevier, vol. 109(C), pages 218-227.
    14. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    15. Zhao, Xiaoli & Cai, Qiong & Li, Shujie & Ma, Chunbo, 2018. "Public preferences for biomass electricity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 242-253.
    16. Bae, Jeong Hwan & Rishi, Meenakshi, 2018. "Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea," Energy Economics, Elsevier, vol. 74(C), pages 490-502.
    17. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    18. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    20. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1505-:d:513702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.