IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1481-d224193.html
   My bibliography  Save this article

A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector

Author

Listed:
  • Dalia Streimikiene

    (Complex Energy Research Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT-4440 Kaunas, Lithuania)

  • Tomas Balezentis

    (Division of Farms and Enterprise Economics, Lithuanian Institute of Agrarian Economics, Kudirkos g. 18, 01113 Vilnius, Lithuania)

  • Ilona Alisauskaite-Seskiene

    (Complex Energy Research Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT-4440 Kaunas, Lithuania)

  • Gintare Stankuniene

    (Complex Energy Research Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT-4440 Kaunas, Lithuania)

  • Zaneta Simanaviciene

    (Faculty of Economics and Business Economics, Mykolas Romeris University, Ateities g. 20, LT-08303 Vilnius, Lithuania)

Abstract

A wide range of climate change mitigation policies have been developed around the world and these policies have become one of the major concerns, however there is still debate among scientists about what are the main external benefits and how to account for them and prepare effective climate change mitigation policies that might be widely accepted by society in general. One of the main ways to assess external benefit of climate change mitigation in energy sector is to conduct Willingness to Pay (WTP) assessments for climate change mitigation options by households. There are many studies on WTP assessment for climate stability conducted in recent years. The paper surveys the existing literature on WTP for climate change mitigation policy in the energy sector. The aim of the paper is to identify the common variables across a varied set of WTP studies in order to establish a basis for comparison. The key variables selected for analysis of WTP studies for climate change mitigation in energy sector addressed in the paper are: the WTP assessment methods; the main attributes used for comparing alternatives in WTP studies, targeted climate change mitigation policies in energy sector, mathematical model used to estimate WTP, the main socio-demographic factors having impact on WTP for climate change mitigation policies. The analysis of WTP studies for climate change mitigation is grouped in two areas: renewables and energy efficiency measures in households. The paper provides analytical structure for future studies to evaluate the effects of variation in key comparative elements upon WTP.

Suggested Citation

  • Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1481-:d:224193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reynolds, Travis & Kolodinsky, Jane & Murray, Byron, 2012. "Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia," Energy Policy, Elsevier, vol. 41(C), pages 712-722.
    2. Michael G. Pollitt & Irina Shaorshadze, 2013. "The role of behavioural economics in energy and climate policy," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 24, pages 523-546, Edward Elgar Publishing.
    3. Yamamoto, Yoshihiro, 2015. "Opinion leadership and willingness to pay for residential photovoltaic systems," Energy Policy, Elsevier, vol. 83(C), pages 185-192.
    4. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
    5. James, Jennifer S. & Rickard, Bradley J. & Rossman, William J., 2009. "Product Differentiation and Market Segmentation in Applesauce: Using a Choice Experiment to Assess the Value of Organic, Local and Nutrition Attributes," Working Papers 48916, Cornell University, Department of Applied Economics and Management.
    6. Cameron, Trudy Ann, 2005. "Individual option prices for climate change mitigation," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 283-301, February.
    7. Bigerna, Simona & Polinori, Paolo, 2014. "Italian households׳ willingness to pay for green electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 110-121.
    8. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    9. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    10. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    11. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    12. Armin Falk & Anke Becker & Thomas Dohmen & David Huffman & Uwe Sunde, 2023. "The Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social Preferences," Management Science, INFORMS, vol. 69(4), pages 1935-1950, April.
    13. Adamowicz W. & Louviere J. & Williams M., 1994. "Combining Revealed and Stated Preference Methods for Valuing Environmental Amenities," Journal of Environmental Economics and Management, Elsevier, vol. 26(3), pages 271-292, May.
    14. Peter Grosche & Colin Vance, 2009. "Willingness to Pay for Energy Conservation and Free-Ridership on Subsidization: Evidence from Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 135-154.
    15. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    16. Nick Hanley & Sergio Colombo & Bengt Kriström & Fiona Watson, 2009. "Accounting for Negative, Zero and Positive Willingness to Pay for Landscape Change in a National Park," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 1-16, February.
    17. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    18. Heath, Chip & Soll, Jack B, 1996. "Mental Budgeting and Consumer Decisions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(1), pages 40-52, June.
    19. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    20. Florian Fizaine & Pierre Voye & Catherine Baumont, 2018. "Does the Literature Support a High Willingness to Pay for Green Label Buildings? An Answer with Treatment of Publication Bias," Revue d'économie politique, Dalloz, vol. 128(5), pages 1013-1046.
    21. Berrens, Robert P. & Bohara, Alok K. & Jenkins-Smith, Hank C. & Silva, Carol L. & Weimer, David L., 2004. "Information and effort in contingent valuation surveys: application to global climate change using national internet samples," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 331-363, March.
    22. Bohringer, Christoph & Vogt, Carsten, 2004. "The dismantling of a breakthrough: the Kyoto Protocol as symbolic policy," European Journal of Political Economy, Elsevier, vol. 20(3), pages 597-617, September.
    23. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    24. Ståle Navrud & Kirsten Grønvik Bråten, 2007. "Consumers' Preferences for Green and Brown Electricity : a Choice Modelling Approach," Revue d'économie politique, Dalloz, vol. 117(5), pages 795-811.
    25. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.
    26. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    27. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
    28. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    29. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    30. Roe, Brian & Teisl, Mario F. & Levy, Alan & Russell, Matthew, 2001. "US consumers' willingness to pay for green electricity," Energy Policy, Elsevier, vol. 29(11), pages 917-925, September.
    31. Danny Campbell & W. Hutchinson & Riccardo Scarpa, 2008. "Incorporating Discontinuous Preferences into the Analysis of Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(3), pages 401-417, November.
    32. Alberto Longo & David Hoyos & Anil Markandya, 2015. "Sequence Effects in the Valuation of Multiple Environmental Programs Using the Contingent Valuation Method," Land Economics, University of Wisconsin Press, vol. 91(1), pages 20-35.
    33. Younjun Kim & Catherine L. Kling & Jinhua Zhao, 2015. "Understanding Behavioral Explanations of the WTP-WTA Divergence Through a Neoclassical Lens: Implications for Environmental Policy," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 169-187, October.
    34. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    35. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan & Mullen, Michael R., 2010. "Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2154-2160, September.
    36. James, Jennifer S. & Rickard, Bradley J. & Rossman, William J., 2009. "Product Differentiation and Market Segmentation in Applesauce: Using a Choice Experiment to Assess the Value of Organic, Local, and Nutrition Attributes," Agricultural and Resource Economics Review, Cambridge University Press, vol. 38(3), pages 357-370, December.
    37. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    38. Streimikiene, Dalia & Alisauskaite-Seskiene, Ilona, 2014. "External costs of electricity generation options in Lithuania," Renewable Energy, Elsevier, vol. 64(C), pages 215-224.
    39. Collins, Matthew & Curtis, John, 2018. "Willingness-to-pay and free-riding in a national energy efficiency retrofit grant scheme," Energy Policy, Elsevier, vol. 118(C), pages 211-220.
    40. Liu, Nan & Zhao, Yuan & Ge, Jiaqi, 2018. "Do renters skimp on energy efficiency during economic recessions? Evidence from Northeast Scotland," Energy, Elsevier, vol. 165(PA), pages 164-175.
    41. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    42. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    43. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
    44. Mayrhofer, Jan P. & Gupta, Joyeeta, 2016. "The science and politics of co-benefits in climate policy," Environmental Science & Policy, Elsevier, vol. 57(C), pages 22-30.
    45. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
    46. Kwon, Tae-hyeong, 2015. "Is the renewable portfolio standard an effective energy policy?: Early evidence from South Korea," Utilities Policy, Elsevier, vol. 36(C), pages 46-51.
    47. Wiser, Ryan H., 2007. "Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles," Ecological Economics, Elsevier, vol. 62(3-4), pages 419-432, May.
    48. Wood, Lisa L. & Kenyon, Anne E. & Desvousges, William H. & Morander, Lyn K., 1995. "How much are customers willing to pay for improvements in health and environmental quality?," The Electricity Journal, Elsevier, vol. 8(4), pages 70-77, May.
    49. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    50. Oberst, Christian & Madlener, Reinhard, 2015. "Prosumer Preferences Regarding the Adoption of Micro‐Generation Technologies: Empirical Evidence for German Homeowners," FCN Working Papers 22/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    51. James, Jennifer S. & Rickard, Bradley J. & Rossman, William J., 2009. "Product Differentiation and Market Segmentation in Applesauce: Using a Choice Experiment to Assess the Value of Organic, Local, and Nutrition Attributes," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 38(3), pages 1-14, December.
    52. Guo, Xiurui & Liu, Haifeng & Mao, Xianqiang & Jin, Jianjun & Chen, Dongsheng & Cheng, Shuiyuan, 2014. "Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China," Energy Policy, Elsevier, vol. 68(C), pages 340-347.
    53. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    54. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    55. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    56. Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
    57. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    58. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    59. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    60. Zhou, Hui & Bukenya, James O., 2016. "Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label," Energy Policy, Elsevier, vol. 91(C), pages 12-21.
    61. Harajli, Hassan & Gordon, Fabiana, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 2. The case of the Lebanese commercial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1643-1649.
    62. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    63. Dalia Streimikiene & Asta Mikalauskiene, 2014. "Lithuanian Consumer`s Willingness to Pay and Feed-in Prices for Renewable Electricity," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 594-594, May.
    64. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    65. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    66. Raymond S. Hartman & Michael J. Doane & Chi-Keung Woo, 1991. "Consumer Rationality and the Status Quo," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(1), pages 141-162.
    67. Hori, Shiro & Kondo, Kayoko & Nogata, Daisuke & Ben, Han, 2013. "The determinants of household energy-saving behavior: Survey and comparison in five major Asian cities," Energy Policy, Elsevier, vol. 52(C), pages 354-362.
    68. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    69. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    70. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    71. Boxall, Peter C. & Adamowicz, Wiktor L. & Swait, Joffre & Williams, Michael & Louviere, Jordan, 1996. "A comparison of stated preference methods for environmental valuation," Ecological Economics, Elsevier, vol. 18(3), pages 243-253, September.
    72. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    73. Hanley, Nick & Nevin, Ceara, 1999. "Appraising renewable energy developments in remote communities: the case of the North Assynt Estate, Scotland," Energy Policy, Elsevier, vol. 27(9), pages 527-547, September.
    74. Carlo Andrea Bollino, 2009. "The Willingness to Pay for Renewable Energy Sources: The Case of Italy with Socio-demographic Determinants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 81-96.
    75. Jacobsen, Grant D. & Kotchen, Matthew J. & Vandenbergh, Michael P., 2012. "The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand," European Economic Review, Elsevier, vol. 56(5), pages 946-960.
    76. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    77. Hanemann, W Michael, 1991. "Willingness to Pay and Willingness to Accept: How Much Can They Differ?," American Economic Review, American Economic Association, vol. 81(3), pages 635-647, June.
    78. Watson, Jim, 2004. "Co-provision in sustainable energy systems: the case of micro-generation," Energy Policy, Elsevier, vol. 32(17), pages 1981-1990, November.
    79. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
    80. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    81. Kostakis, I. & Sardianou, E., 2012. "Which factors affect the willingness of tourists to pay for renewable energy?," Renewable Energy, Elsevier, vol. 38(1), pages 169-172.
    82. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    83. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    84. Sonia Akter & Jeff Bennett, 2011. "Household perceptions of climate change and preferences for mitigation action: the case of the Carbon Pollution Reduction Scheme in Australia," Climatic Change, Springer, vol. 109(3), pages 417-436, December.
    85. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    86. Van der Veen, Reinier A.C. & De Vries, Laurens J., 2009. "The impact of microgeneration upon the Dutch balancing market," Energy Policy, Elsevier, vol. 37(7), pages 2788-2797, July.
    87. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    88. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    89. Morita, Tamaki & Managi, Shunsuke, 2015. "Consumers’ willingness to pay for electricity after the Great East Japan Earthquake," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 82-105.
    90. Jesper Nielsen & Dorte Gyrd-Hansen & Ivar SØNBØ Kristiansen & JØRgen NexØE, 2003. "Impact of Socio-demographic Factors on Willingness to Pay for the Reduction of a Future Health Risk," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 46(1), pages 39-47.
    91. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    92. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    93. van Putten, Marloes & Lijesen, Mark & Özel, Tanju & Vink, Nancy & Wevers, Harm, 2014. "Valuing the preferences for micro-generation of renewables by househoulds," Energy, Elsevier, vol. 71(C), pages 596-604.
    94. Akcura, Elcin, 2015. "Mandatory versus voluntary payment for green electricity," Ecological Economics, Elsevier, vol. 116(C), pages 84-94.
    95. George F. Loewenstein, 1988. "Frames of Mind in Intertemporal Choice," Management Science, INFORMS, vol. 34(2), pages 200-214, February.
    96. Solomon, Barry D. & Johnson, Nicholas H., 2009. "Valuing climate protection through willingness to pay for biomass ethanol," Ecological Economics, Elsevier, vol. 68(7), pages 2137-2144, May.
    97. Chan, Kai-Ying & Oerlemans, Leon A.G. & Volschenk, Jako, 2015. "On the construct validity of measures of willingness to pay for green electricity: Evidence from a South African case," Applied Energy, Elsevier, vol. 160(C), pages 321-328.
    98. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2018. "Preferences for Energy Efficiency vs. Renewables: What Is the Willingness to Pay to Reduce CO2 Emissions?," Ecological Economics, Elsevier, vol. 144(C), pages 171-185.
    99. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
    100. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    3. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    4. Dalia Streimikiene & Tomas Balezentis, 2020. "Willingness to Pay for Renovation of Multi-Flat Buildings and to Share the Costs of Renovation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    5. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    6. Aleksandra Sus & Rafał Trzaska & Maciej Wilczyński & Joanna Hołub-Iwan, 2023. "Strategies of Energy Suppliers and Consumer Awareness in Green Energy Optics," Energies, MDPI, vol. 16(4), pages 1-23, February.
    7. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    8. Ji-Hee Son & Jeawon Kim & Wona Lee & Songhee Han, 2022. "Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    9. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.
    10. Lambert, Dayton M. & Ripberger, Joseph T. & Jenkins-Smith, Hank & Silva, Carol L. & Bowman, Warigia & Long, Michael A. & Gupta, Kuhika & Fox, Andrew, 2024. "Consumer willingness-to-pay for a resilient electrical grid," Energy Economics, Elsevier, vol. 131(C).
    11. Thomas Douenne & Adrien Fabre, 2019. "Can We Reconcile French People with the Carbon Tax? Disentangling Beliefs from Preferences," Working Papers 2019.10, FAERE - French Association of Environmental and Resource Economists.
    12. Artur Pawłowski & Paweł Rydzewski, 2023. "Challenges and Opportunities for the Energy Sector in the Face of Threats Such as Climate Change and the COVID-19 Pandemic—An International Perspective," Energies, MDPI, vol. 16(11), pages 1-21, May.
    13. Dalia Štreimikienė & Vidas Lekavičius & Gintare Stankūnienė & Aušra Pažėraitė, 2022. "Renewable Energy Acceptance by Households: Evidence from Lithuania," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    14. Rui Zhou & Hiroatsu Fukuda & You Li & Yafei Wang, 2023. "Comparison of Willingness to Pay for Quality Air and Renewable Energy Considering Urban Living Experience," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. Masako Numata & Masahiro Sugiyama & Wunna Swe & Daniel del Barrio Alvarez, 2021. "Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference," Energies, MDPI, vol. 14(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    2. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    3. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    4. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    5. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    6. Masako Numata & Masahiro Sugiyama & Wunna Swe & Daniel del Barrio Alvarez, 2021. "Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference," Energies, MDPI, vol. 14(5), pages 1-17, March.
    7. Bae, Jeong Hwan & Rishi, Meenakshi, 2018. "Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea," Energy Economics, Elsevier, vol. 74(C), pages 490-502.
    8. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
    9. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    10. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).
    11. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    12. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
    13. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    14. Dastan Bamwesigye, 2023. "Willingness to Pay for Alternative Energies in Uganda: Energy Needs and Policy Instruments towards Zero Deforestation 2030 and Climate Change," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. Heng, Yan & Lu, Chao-Lin & Yu, Luqing & Gao, Zhifeng, 2020. "The heterogeneous preferences for solar energy policies among US households," Energy Policy, Elsevier, vol. 137(C).
    16. Cardella, Eric & Ewing, Bradley T. & Williams, Ryan B., 2017. "Price volatility and residential electricity decisions: Experimental evidence on the convergence of energy generating source," Energy Economics, Elsevier, vol. 62(C), pages 428-437.
    17. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    18. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    19. Dagher, Leila & Bird, Lori & Heeter, Jenny, 2017. "Residential green power demand in the United States," Renewable Energy, Elsevier, vol. 114(PB), pages 1062-1068.
    20. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1481-:d:224193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.