IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i10p13192-13205d56388.html
   My bibliography  Save this article

Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change

Author

Listed:
  • Dong Hee Suh

    () (Food and Resource Economics Department, University of Florida, Gainesville, FL 32611-0240, USA)

Abstract

This study examines factor substitution and energy intensity in the U.S. agricultural sector. Not only does this study focus on the substitution possibilities between energy and non-energy factors, but it also attempts to identify the factors that determine energy intensity. For the empirical analysis, a system of share equations for capital, energy and labor is estimated to calculate the price elasticities of factor demand. The findings reveal that energy demand is more elastic than the demand for capital and labor, and factor substitution possibilities exist across farm production regions. Moreover, the growth rate of energy intensity is decomposed into various driving forces, such as changes in budget, factor substitution, output and technology. The findings show that the budget and output effects are the major driving forces behind the reduced energy intensity, while there are few factor substitutions and technological improvements to reduce energy intensity in the U.S. agricultural sector.

Suggested Citation

  • Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, Open Access Journal, vol. 7(10), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13192-13205:d:56388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/10/13192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/10/13192/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    2. Kurt Kratena, 2007. "Technical Change, Investment and Energy Intensity," Economic Systems Research, Taylor & Francis Journals, vol. 19(3), pages 295-314.
    3. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    4. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    5. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, Open Access Journal, vol. 6(8), pages 1-17, August.
    6. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    7. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    8. Sands, Ron & Westcott, Paul & Price, J. Michael & Beckman, Jayson & Leibtag, Ephraim & Lucier, Gary & McBride, William D. & McGranahan, David & Morehart, Mitch & Roeger, Edward & Schaible, Glenn & Woj, 2011. "Impacts of Higher Energy Prices on Agriculture and Rural Economies," Economic Research Report 262236, United States Department of Agriculture, Economic Research Service.
    9. Pindyck, Robert S & Rotemberg, Julio J, 1983. "Dynamic Factor Demands and the Effects of Energy Price Shocks," American Economic Review, American Economic Association, vol. 73(5), pages 1066-1079, December.
    10. Welsch, Heinz & Ochsen, Carsten, 2005. "The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade," Energy Economics, Elsevier, vol. 27(1), pages 93-111, January.
    11. Debertin, David L. & Pagoulatos, Angelos & Aoun, Abdessalem, 1990. "Impacts of technological change on factor substitution between energy and other inputs within US agriculture, 1950-79," Energy Economics, Elsevier, vol. 12(1), pages 2-10, January.
    12. Miguel A. Tovar and Emma M. Iglesias, 2013. "Capital-Energy Relationships: An Analysis when Disaggregating by Industry and Different Types of Capital," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    14. Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
    15. Manuel Frondel & Christoph M. Schmidt, 2002. "The Capital-Energy Controversy: An Artifact of Cost Shares?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 53-79.
    16. Beckman, Jayson F. & Borchers, Allison & Jones, Carol, 2013. "Agriculture's Supply and Demand for Energy and Energy Products," Economic Information Bulletin 149033, United States Department of Agriculture, Economic Research Service.
    17. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    18. Thompson, Peter & Taylor, Timothy G, 1995. "The Capital-Energy Substitutability Debate: A New Look," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 565-569, August.
    19. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    20. Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
    21. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    22. Wang, Sun Ling & Ball, Eldon, 2014. "Agricultural Productivity Growth in the United States: 1948-2011," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 01, pages 1-1, February.
    23. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    24. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
    25. Subhash C. Ray, 1982. "A Translog Cost Function Analysis of U.S. Agriculture, 1939–77," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(3), pages 490-498.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    energy intensity; agriculture; factor substitution; technology;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13192-13205:d:56388. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.