IDEAS home Printed from
   My bibliography  Save this paper

Fuel Conservation Effect of Energy Subsidy Reform in Iran


  • Hossein Mirshojaeian Hosseini

    (Graduate School for International Development and Cooperation, Hiroshima University)

  • Shinji Kaneko

    (Graduate School for International Development and Cooperation, Hiroshima University)


To prevent further increases in energy consumption, the Iranian government commenced energy subsidy reform in 2010. This paper investigates the fuel conservation effects of the reform in Iran using a homothetic translog cost function that provides estimates of the own- and cross-price elasticities of fuel demands. The percentage reduction in fuel demands is estimated using the likely effect of the reform on fuel prices. The results reveal that the reform may not be as successful as assumed. Under optimistic assumptions, the reform may reduce energy consumption marginally, and under pessimistic assumptions, it may increase energy consumption because of inelastic fuel demands and substantial substitution between fuels.

Suggested Citation

  • Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, University of Tehran, Economics Faculty.
  • Handle: RePEc:eut:wpaper:dp3-1

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    File Function: First version, 2013
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    2. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    3. Vega-Cervera, J.A. & Medina, J., 2000. "Energy as a productive input: The underlying technology for Portugal and Spain," Energy, Elsevier, vol. 25(8), pages 757-775.
    4. Welsch, Heinz & Ochsen, Carsten, 2005. "The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade," Energy Economics, Elsevier, vol. 27(1), pages 93-111, January.
    5. Debertin, David L. & Pagoulatos, Angelos & Aoun, Abdessalem, 1990. "Impacts of technological change on factor substitution between energy and other inputs within US agriculture, 1950-79," Energy Economics, Elsevier, vol. 12(1), pages 2-10, January.
    6. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    7. Magnus, Jan R, 1979. "Substitution between Energy and Non-Energy Inputs in the Netherlands, 1950-1976," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 465-484, June.
    8. Renou-Maissant, Patricia, 1999. "Interfuel competition in the industrial sector of seven OECD countries," Energy Policy, Elsevier, vol. 27(2), pages 99-110, February.
    9. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    10. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    11. Bölük, Gülden & Koç, A. Ali, 2010. "Electricity demand of manufacturing sector in Turkey: A translog cost approach," Energy Economics, Elsevier, vol. 32(3), pages 609-615, May.
    12. Perkins, F. C., 1994. "A dynamic analysis of Japanese energy policies : Their impact on fuel switching and conservation," Energy Policy, Elsevier, vol. 22(7), pages 595-607, July.
    13. Soderholm, Patrik, 2001. "Fossil fuel flexibility in west European power generation and the impact of system load factors," Energy Economics, Elsevier, vol. 23(1), pages 77-97, January.
    14. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    15. Humphrey, David Burras & Moroney, John R, 1975. "Substitution among Capital, Labor, and Natural Resource Products in American Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 83(1), pages 57-82, February.
    16. Christopoulos, Dimitris K. & Tsionas, Efthymios G., 2002. "Allocative inefficiency and the capital-energy controversy," Energy Economics, Elsevier, vol. 24(4), pages 305-318, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Energy subsidy reform; Energy conservation; Iran; Translog cost function;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q38 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Government Policy (includes OPEC Policy)
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eut:wpaper:dp3-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ([z.rahimalipour]). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.