IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7584-d1139952.html
   My bibliography  Save this article

Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels

Author

Listed:
  • Siddhartha Shankar Bhattacharyya

    (Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
    Texas A&M AgriLife Research, College Station, TX 77843, USA)

  • Pedro Mondaca

    (Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaiso 1680, Chile
    Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España, Valparaiso 1680, Chile)

  • Oloka Shushupti

    (Department of Soil, Water and Environment, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh)

  • Sharjeel Ashfaq

    (Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria)

Abstract

Unique plant functional traits (morpho-physio-anatomical) may respond to novel environmental conditions to counterbalance elevated carbon dioxide (eCO 2 ) concentrations. Utilizing CO 2 , plants produce photoassimilates (carbohydrates). A mechanistic understanding of partitioning and translocation of carbon/photoassimilates into different plant parts and soils under ambient and eCO 2 is required. In this study, we examine and present the intrinsic relationship between plant functional traits and eCO 2 and seek answers to (i) how do plant functional traits (morpho-physio-anatomical features) affect C storage and partitioning under ambient and eCO 2 in different plant parts? (ii) How do plant functional traits influence C transfer to the soil and rhizosphere services? Our study suggests that morpho-physio-anatomical features are interlinked, and under eCO 2 , plant functional traits influence the quantity of C accumulation inside the plant biomass, its potential translocation to different plant parts, and to the soil. The availability of additional photoassimilates aids in increasing the above- and belowground growth of plants. Moreover, plants may retain a predisposition to build thick leaves due to reduced specific leaf area, thicker palisade tissue, and higher palisade/sponge tissue thickness. eCO 2 and soil-available N can alter root anatomy, the release of metabolites, and root respiration, impacting potential carbon transfer to the soil.

Suggested Citation

  • Siddhartha Shankar Bhattacharyya & Pedro Mondaca & Oloka Shushupti & Sharjeel Ashfaq, 2023. "Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7584-:d:1139952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Matthias Honegger & Axel Michaelowa & Joyashree Roy, 2021. "Potential implications of carbon dioxide removal for the sustainable development goals," Climate Policy, Taylor & Francis Journals, vol. 21(5), pages 678-698, May.
    3. Alistair M. Hetherington & F. Ian Woodward, 2003. "The role of stomata in sensing and driving environmental change," Nature, Nature, vol. 424(6951), pages 901-908, August.
    4. David W. Kicklighter & Jerry M. Melillo & Erwan Monier & Andrei P. Sokolov & Qianlai Zhuang, 2019. "Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia," Nature Communications, Nature, vol. 10(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasreen Fatima Veesar & Wajid Ali Jatoi & Naila Gandahi & Ghulam Aisha & Altaf Hussain Solangi & Shahnaz Memon, 2020. "Evaluation of Cotton Genotypes for Drought Tolerance and Their Correlation Study at Seedling Stage," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 29(1), pages 22090-22099, July.
    2. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    3. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    4. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    5. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    6. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    7. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    8. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    9. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    10. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    11. Yusen Zhou & Tian Zhang & Xiaocui Wang & Wenqiang Wu & Jingjing Xing & Zuliang Li & Xin Qiao & Chunrui Zhang & Xiaohang Wang & Guangshun Wang & Wenhui Li & Shenglong Bai & Zhi Li & Yuanzhen Suo & Jiaj, 2023. "A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jiyu Chen & Jing Gao & Qi Wang & Xianming Tan & Shenglan Li & Ping Chen & Taiwen Yong & Xiaochun Wang & Yushan Wu & Feng Yang & Wenyu Yang, 2022. "Blue-Light-Dependent Stomatal Density and Specific Leaf Weight Coordinate to Promote Gas Exchange of Soybean Leaves," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    13. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    14. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    16. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    18. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.
    20. Samaniego, Joseluis & Lorenzo, Santiago & Rondón Toro, Estefani & Krieger Merico, Luiz F. & Herrera Jiménez, Juan & Rouse, Paul & Harrison, Nicholas, 2023. "Nature-based solutions and carbon dioxide removal," Documentos de Proyectos 48691, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7584-:d:1139952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.